

HPC Scheduling in a Brave New World

Gonzalo P. Rodrigo Álvarez

PhD Defense in Computing Science

Public defense of academic thesis for the degree of Doctor of Philosophy

PhD Defense

Respondent MSc *Gonzalo P. Rodrigo Álvares*

Faculty Opponent *Professor Ewa Deelman, University of Southern California, CA, USA*

PhD Defense

Examination Board

Docent Henrik Björklund, Department of Computing Science, Umeå University

Docent Emanuel Rubensson, Department of Information Technology, Uppsala University

Docent Oxana Smirnova, Department of Physics, Lund University

Chairman *Professor Erik Elmroth* Department of Computing Science, Umeå University

PhD Defense Procedure

- 1. Presentation of the respondent, the faculty opponent, the examination board, and the chairman
- 2. The respondent comments, addendum, errata
- 3. Presentations (the respondent and the opponent)
- 4. The respondent possible addendum
- 5. The opponent and the respondent disputes
- 6. The examination board and the respondent disputes
- 7. Open floor the audience and the respondent disputes
- 8. The defense is closed
- 9. The examination board convenes

HPC Scheduling in a Brave New World

Doctoral thesis defense

Gonzalo P. Rodrigo Álvarez gonzalo@cs.umu.se gprodrigoalvarez@lbl.gov

All papers and work

Paper I: Towards Understanding HPC Users and Systems: A NERSC Case Study. Submitted to JPDC (Journal of Parallel and Distributed Computing)

Paper Ia: Towards Understanding Job Heterogeneity in HPC: A NERSC Case Study. 6th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID 2016)

Paper Ib: HPC System Lifetime Story: Workload Characterization and Evolutionary Analyses on NERSC Systems. In Proceedings of the 24th International Symposium on High-Performance Parallel and Distributed Computing (HPDC 2015)

Paper II: Priority Operators for Fairshare Scheduling. 18th Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP 2014) co-located with the IPDPS 2014 conference.

Paper III: A2L2: An Application Aware Flexible HPC Scheduling Model for Low-Latency Allocation. In Proceedings of the 8th International Workshop on Virtualization Technologies in Distributed Computing (VTDC 2015)

Paper IV: ScSF: A Scheduling Simulation Framework. 21th Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP 2017) co-located with the IPDPS 2017 conference

Paper V: Enabling workflow aware scheduling on HPC systems. 26th International Symposium on High-Performance Parallel and Distributed Computing (HPDC 2017)

TR I: Establishing the equivalence between operators: theorem to establish a sufficient condition for two operators to produce the same ordering in a Fairshare prioritization system. January 2014

TR II: Proof of compliance for the relative operator on the proportional distribution of unused share in an ordering fairshare system. January 2014

TR III: Theoretical analysis of a workflow aware scheduling algorithm. March 2017

Open Source Project: WoAS (Workflow Aware scheduling) for Slurm **Open Source Project**: ScSF, Scheduling Simulation Framework **Open Source Project**: qdo, a many task workflow framework

All papers and work: In this presentation

Paper I: Towards Understanding HPC Users and Systems: A NERSC Case Study. Submitted to JPDC (Journal of Parallel and Distributed Computing)

Paper Ia: Towards Understanding Job Heterogeneity in HPC: A NERSC Case Study. 6th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID 2016)

Paper Ib: HPC System Lifetime Story: Workload Characterization and Evolutionary Analyses on NERSC Systems. In Proceedings of the 24th International Symposium on High-Performance Parallel and Distributed Computing (HPDC 2015)

Paper II: Priority Operators for Fairshare Scheduling. 18th Workshops on Job Scheduling Strategies for Parallel Processing (JSSPP 2014) co-located with the IPDPS 2014 conference.

Paper III: A2L2: An Application Aware Flexible HPC Scheduling Model for Low-Latency Allocation. In Proceedings of the 8th International Workshop on Virtualization Technologies in Distributed Computing (VTDC 2015)

Paper IV: ScSF: A Scheduling Simulation Framework. 21th Workshops on Job Scheduling Strategies for Parallel Processing (JSSPP 2017) co-located with the IPDPS 2017 conference

Paper V: Enabling workflow aware scheduling on HPC systems. 26th International Symposium on High-Performance Parallel and Distributed Computing (HPDC 2017)

TR I: Establishing the equivalence between operators: theorem to establish a sufficient condition for two operators to produce the same ordering in a Fairshare prioritization system. January 2014

TR II: Proof of compliance for the relative operator on the proportional distribution of unused share in an ordering fairshare system. January 2014

TR III: Theoretical analysis of a workflow aware scheduling algorithm. March 2017

Open Source Project: WoAS (Workflow Aware scheduling) for Slurm **Open Source Project**: ScSF, Scheduling Simulation Framework

Open Source Project: qdo, a many task workflow framework

All papers and work: Also relevant

Paper I: Towards Understanding HPC Users and Systems: A NERSC Case Study. Submitted to JPDC (Journal of Parallel and Distributed Computing)

Paper Ia: Towards Understanding Job Heterogeneity in HPC: A NERSC Case Study. 6th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID 2016)

Paper Ib: HPC System Lifetime Story: Workload Characterization and Evolutionary Analyses on NERSC Systems. In Proceedings of the 24th International Symposium on High-Performance Parallel and Distributed Computing (HPDC 2015)

Paper II: Priority Operators for Fairshare Scheduling. 18th Workshops on Job Scheduling Strategies for Parallel Processing (JSSPP 2014) co-located with the IPDPS 2014 conference.

Paper III: A2L2: An Application Aware Flexible HPC Scheduling Model for Low-Latency Allocation. In Proceedings of the 8th International Workshop on Virtualization Technologies in Distributed Computing (VTDC 2015)

Paper IV: ScSF: A Scheduling Simulation Framework. 21th Workshops on Job Scheduling Strategies for Parallel Processing (JSSPP 2017) co-located with the IPDPS 2017 conference

Paper V: Enabling workflow aware scheduling on HPC systems. 26th International Symposium on High-Performance Parallel and Distributed Computing (HPDC 2017)

TR I: Establishing the equivalence between operators: theorem to establish a sufficient condition for two operators to produce the same ordering in a Fairshare prioritization system. January 2014 TR II: Proof of compliance for the relative operator on the proportional distribution of unused share in an ordering fairshare system. January 2014 TR III: Theoretical analysis of a workflow aware scheduling algorithm. March 2017

Open Source Project: WoAS (Workflow Aware scheduling) for Slurm **Open Source Project**: ScSF, Scheduling Simulation Framework **Open Source Project**: qdo, a many task workflow framework

All papers and work: Corrections

Paper I: Towards Understanding HPC Users and Systems: A NERSC Case Study. Submitted to JPDC (Journal of Parallel and Distributed Computing)

Paper Ia: Towards Understanding Job Heterogeneity in HPC: A NERSC Case Study. 6th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID 2016)

Paper Ib: HPC System Lifetime Story: Workload Characterization and Evolutionary Analyses on NERSC Systems. In Proceedings of the 24th International Symposium on High-Performance Parallel and Distributed Computing (HPDC 2015)

Paper II: Priority Operators for Fairshare Scheduling. 18th Workshops on Job Scheduling Strategies for Parallel Processing (JSSPP 2014) co-located with the IPDPS 2014 conference.

Paper III: A2L2: An Application Aware Flexible HPC Scheduling Model for Low-Latency Allocation. In Proceedings of the 8th International Workshop on Virtualization Technologies in Distributed Computing (VTDC 2015)

Paper IV: ScSF: A Scheduling Simulation Framework. 21th Workshops on Job Scheduling Strategies for Parallel Processing (JSSPP 2017) co-located with the IPDPS 2017 conference

Paper V: Enabling workflow aware scheduling on HPC systems. 26th International Symposium on High-Performance Parallel and Distributed Computing (HPDC 2017)

TR I: Establishing the equivalence between operators: theorem to establish a sufficient condition for two operators to produce the same ordering in a Fairshare prioritization system. January 2014

TR II: Proof of compliance for the relative operator on the proportional distribution of unused share in an ordering fairshare system. January 2014

TR III: Theoretical analysis of a workflow aware scheduling algorithm. March 2017

Open Source Project: WoAS (Workflow Aware scheduling) for Slurm **Open Source Project**: ScSF, Scheduling Simulation Framework **Open Source Project**: qdo, a many task workflow framework

Outline

High Performance Computing

PRIMER

High Performance Computing: Uses

HPC Example application: weather forecast

HPC economics 101: Scientific work

HPC economics 101: Scientific work

HPC Systems: Final Requirement

... a computing system should be considered high performance if it supports the execution of large-scale, performance-oriented applications, at the smallest possible cost, with the shortest possible runtime, within some time constraint...

HPC Systems: Examples

HPC Systems: Edison in detail

HPC Systems: Edison in detail

First Cray XC30: #1

Peak: 2.57 Petaflops/s.

357 Terabytes of memory

133.824 cores (x2 with HT)

5586 compute nodes (24 cores)

File Systems: up to 700GB/s

Power: **3,747.07 kW**

Custom interconnect: Aries

MPI	Latency (us)	Bandwidth (GB/s)
Socket	0.3	
Node	0.7	
Blade	1.3	14.9
Rank-1	1.5	15.4
Rank-2	1.5	15.4
Rank-3	2.2	15.3
Farthest	2.3	15.3
		DEDKELEN

Aries Topology

Top500: #18 (2014)-> #60 (2016)

On a normal operation: more than 500 apps run at the same time

Characterization of the Cray Aries Network - NERSC - https://www.nersc.gov/assets/pubs_presos/NUG2014Aries.pdf

HPC Systems: Edison in detail

First Cray XC30: #1

Peak: 2.57 Petaflops/s.

357 Terabytes of memory

133.824 cores (x2 with HT)

5586 compute nodes (24 cores)

File Systems: up to 700GB/s

Power: 3,747.07 kW

Extreme

parallelism

Custom interconnect: Aries

liory				
h HT)	MPI	Latency (us)	Bandwidth (GB/s)	
	Socket	0.3		Aries
(24 cores)	Node	0.7		Topology
OGB/s	Blade	1.3	14.9	++
	Rank-1	1.5	15.4	DYYC.
Aries	Rank-2 Rank-3 Farthes	Low lat synchro netw	ency, onous ork	Power efficiency
Fast processing	0 (20 8 pn:	Large n and	nemory I/O	Homogeneity

concurrency

o50

Or

an

Homogeneity

Using an HPC systems: User perspective

HPC Jobs and scheduling

HPC Scheduling

First Come First Serve (FCFS): Run jobs in arrival order Backfill: Run jobs that will not delay previous ones

Generic HPC Scheduler

Generic HPC Scheduler

Challenges in High Performance Computing

NEW HPC APPLICATIONS (AND THEIR BATCH JOBS)

Welcome to the 4th Paradigm of Science: Big Data

Tansley, Stewart, and Kristin Michele Tolle, eds. The fourth paradigm: data-intensive scientific discovery. Vol. 1. Redmond, WA: Microsoft research, 2009.

Paper III: A2L2: An Application Aware Flexible HPC Scheduling Model for Low-Latency Allocation. In Proceedings of the 8th International Workshop on Virtualization Technologies in Distributed Computing (VTDC 2015)

Data more important in HPC workloads

Paper III: A2L2: An Application Aware Flexible HPC Scheduling Model for Low-Latency Allocation. In Proceedings of the 8th International Workshop on Virtualization Technologies in Distributed Computing (VTDC 2015)

Applications are changing, and batch jobs?

Source Dataset: NERSC Systems

Supercomputers

Cluster

General conclusions

Job heterogeneity and performance

Job Heterogeneity

Overall: Search minimum k-means clusters in job geometry values (runtime, #cores)
Per queue: Map clusters on Queues

Heterogeneity Vs. Wait Time?

Wait time expectation

Job Geometry	Bigger = Longer Wait
Job Priority	Higher = Shorter Wait
Queue busy	Higher = Longer Wait

Observation

Queue Homog. Low = Predictable?

Performance + Queues + Homogeneity

Conclusions on job analysis

Diversity also present in job geometries

Job heterogeneity affect queue's wait time predictability

What about re-shuffling queue?

What about extra schedulers? Scheduler for smaller "opportunistic" jobs: Hawk*

* Delgado, P., Dinu, F., Kermarrec, A. M., & Zwaenepoel, W. (2015, July). Hawk: Hybrid Datacenter Scheduling. In USENIX Annual Technical Conference **Paper I:** Towards Understanding HPC Users and Systems: A NERSC Case Study. Submitted to JPDC (Journal of Parallel and Distributed Computing)

Challenges in High Performance Computing

SCHEDULING WORKFLOWS

What is a workflow?

"... a composition of jobs with data or control dependencies..."

IceCube Neutrino telescope data pipeline (simplified)

Workflows and HPC Schedulers

Paper V: A new scheduling algorithm for workflows in HPC systems. 26th International Symposium on High-Performance Parallel and Distributed Computing (HPDC 2017)

Workflows and HPC Schedulers

Workflows and HPC Schedulers

Improving Workflow Scheduling

Paper V: A new scheduling algorithm for workflows in HPC systems. 26th International Symposium on High-Performance Parallel and Distributed Computing (HPDC 2017)

WoAS: Workflow Aware Scheduling

WoAS: In a real Scheduler

WoAS for Slurm

Open Source Patch for Slurm 14.8.3

WoAS Evaluation

WoAS Evaluation: Simulations

271 Scenarios, 1626 Experiments. 29 years of Edison: 3.8 Million Core-Years

Results: Does WoAS work?

Results: How much does WoAS work better?

Paper V: A new scheduling algorithm for workflows in HPC systems. 26th International Symposium on High-Performance Parallel and Distributed Computing (HPDC 2017)

Evaluation: Does WoAS break the schedule?

Regular Jobs Slowdown Analysis

Challenges in High Performance Computing

HPC SCHEDULING RESEARCH

HPC Scheduling Research approaches

Schwiegelshohn, U.: How to design a job scheduling algorithm. In: Workshop on Job Scheduling Strategies for Parallel Processing. pp. 147–167. Springer (2014)

HPC Scheduling Simulation: Research cycle

ScSF: Scheduling Simulation Framework

ScSF: Workload Modeling & Generation

ScSF: Workload Modeling & Generation

ScSF: Slurm Simulator

Wraps real Slurm Scheduler

Emulates system and job execution

Emulates job submission (replay)

Original Implementation: Slow (1 to 1), no determinism

Slurm simulator improved by synchronizing scheduling threads

Faster (20x speed-up)

Time consistent

Achieve good utilization with out-of-the-box scheduler

ScSF: Running experiments in scale

ScSF: Lessons learned

Slurm is a complex old-fashion-SWE package: expensive to modify

Loss-less experiment restart is needed Specially if experiment runtime are long (e.g. 5 days)

HPC scheduling requires a lot of simulation **Think big from the beginning!**

Loaded systems network fail So harden your comms

The system is as weak as its weakest link Single point of failure

Summary and Conclusions

In this work... ... we covered the complete research cycle of HPC scheduling.

Understanding new applications and workloads and their Current systems and applications conform a *Brave New World*

that requires new scheduling models and algorithms!

Improved HPC workflow scheduling

nsights on new systems, applications challenges, and **#hpcmatters!**

