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ABSTRACT
Work�ows from diverse scienti�c domains are increasingly present
in the workloads of current HPC systems. However, HPC sche-
duling systems do not incorporate work�ow speci�c mechanisms
beyond the capacity to declare dependencies between jobs. �us,
when users run work�ows as sets of batch jobs with completion
dependencies, the work�ows experience long turn around times.
Alternatively, when they are submi�ed as single jobs, allocating
the maximum requirementof resources for the whole runtime, they
resources, reducing the HPC system utilization.

In this paper, we present a work�ow aware scheduling (WoAS)
system that enables pre-existing scheduling algorithms to take ad-
vantage of the �ne grained work�ow resource requirements and
structure, without any modi�cation to the original algorithms. �e
current implementation of WoAS is integrated in Slurm, a widely
used HPC batch scheduler. We evaluate the system in simulation
using real and synthetic work�ows and a synthetic baseline work-
load that captures the job pa�erns observed over three years of the
real workload data of Edison, a large supercomputer hosted at the
National Energy Research Scienti�c Computing Center. Finally, our
results show that WoAS e�ectively reduces work�ow turnaround
time and improves system utilization without a signi�cant impact
on the slowdown of traditional jobs.

1 INTRODUCTION
In recent years, we have seen an increase in the processing of large
amounts of scienti�c data and high-throughput processing at HPC
centers. �ese scienti�c workloads are changing the landscape
of so�ware ecosystems on HPC centers that have traditionally
supported large communication-intensive MPI jobs. �e scienti�c
workloads are increasingly composed as scienti�c work�ows with
complex dependencies.

�e HPC batch schedulers still operate with a job-centric view
and do not account for the complexities and dependencies of sci-
enti�c work�ows. Scienti�c work�ow tools present in HPC centers
o�en run work�ows as chained jobs (jobs with dependencies) or
as a pilot job (a single job containing the entire work�ow). �ese
approaches both have their drawbacks. Work�ows run as chained
jobs have very long and unpredictable turnaround times as they
include the intermediate wait times for each job in the critical path.
Work�ows run as pilot jobs are likely to have shorter turnaround
time, since the intermediate tasks do not wait for resources. How-
ever, they allocate the maximum required resources over the length
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of the work�ow for its entire runtime. �us, resources are wasted
as they are allocated but idle in parts of the work�ow.

Scienti�c work�ows also provide a unique opportunity for fu-
ture HPC scheduling and resource management systems. Scienti�c
work�ows include detailed knowledge of the complex pipeline
and dependencies between the tasks that can be used to gain ef-
�ciency in the system. In this work, we present the design and
implementation for extending existing batch schedulers with work-
�ow awareness. Our work�ow aware scheduling system (WoAS)
takes advantage of dependencies to achieve short turnaround times
while not wasting resources. WoAS enables pre-existing scheduling
algorithms to be aware of the �ne grained work�ow resource re-
quirements and structure, without any modi�cation to the original
scheduling algorithms. WoAS uses the knowledge of the work�ow
graph to schedule individual tasks while minimizing the wait times
for the jobs.

We implement WoAS within Slurm, a common HPC workload
manager. Execution of diverse work�ow workloads was simulated
over a model of a real system (NERSC’s Edison) [18], [1]. In our
evaluation, we compare its performance with the chained and pilot
job approaches. �e experiment set is composed of 271 scenarios,
covering di�erent work�ow types and submission pa�erns. Simu-
lated time accounts for 253,484 hours (29 years) of system time and
3.8 million compute core-years.

Our experiments show that in most workloads run with WoAS,
work�ows show signi�cantly shorter turnaround times than the
chained job and single job approaches without wasting resources.
�e impact on non-work�ow jobs was minimal except for work-
loads heavily dominated by very large work�ows where perform-
ance limitations of the back�lling (queue depth limit) interfered
with their scheduling.

Speci�cally, in this paper, our contributions are:

• We design a work�ow aware scheduling system and al-
gorithms that produce turnaround times with almost no
intermediate wait times and wastage of resources.

• We present the WoAS implementation and its integration
with Slurm. �e WoAS system will soon to be made avail-
able open source.

• We evaluate and present the results of a detailed compar-
ison of the work�ow performance and system impact of
WoAS, the pilot job, and the chained job approaches for
diverse work�ow workloads simulated over the model of
Edison, a supercomputing system at the National Energy
Research Scienti�c Computing Center (NERSC).

�e rest of the paper is organized as follows. In Section 2, we present
the life cycle of work�ows and current scheduling approaches. �e
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Figure 1: Cybershake work�ow executed using chained and
pilot job approaches. �e chained jobs approach increases
execution time due to the wait times. In the single job, there
are no intermediate wait times but it wastes 600 cores for 4h.

Work�ow Aware Scheduling technique (WoAS) is discussed in Sec-
tion 3. We present the methodology to compare WoAS to the exist-
ing work�ow scheduling methods in Section 4 and experimental
results in Section 5. We discuss our conclusions in Section 6.

2 BACKGROUND
In this section, we describe the state-of-art and challenges of man-
aging scienti�c work�ows on HPC systems and discuss related
work.

2.1 A work�ow’s life-cycle
Work�ows are represented as Directed Acyclic Graphs (DAG) i.e.,
each vertex represents one or more work tasks, and the edges
express control or data dependencies between the (vertices) tasks.

�e �rst step to run a work�ow on an HPC system is to map
the DAG into one or more batch jobs, while respecting the data
and control dependencies expressed by the edges. Users manually
do the mapping or rely on work�ow managers [26], which might
also automate the submission and control of the work�ow job(s).
�ere are di�erent mapping techniques governed by targets such
as minimizing cost [27], minimizing runtime and turnaround time
[4, 25], or tolerating faulty, distributed resources [17].

Once the execution plan is de�ned as a list of jobs and dependen-
cies, users usually follow one of two strategies to submit a work�ow.
�e strategies balance between lower resource consumption (as
chained jobs) or shorter turn around time (as a pilot job). Figure 1
illustrates these approaches the for Cybershake work�ow ([3]),
which is used by to simulate geological structures to characterize
earthquake hazards in a region.

2.1.1 Workflow as chained jobs. In this approach, one batch job
is submi�ed per execution plan job. Current batch schedulers allow
users to specify dependencies between batch jobs. �e scheduler
then forces jobs to wait to start until the completion of its depend-
encies. Alternatively, users or their work�ow engines might submit
a job when the the ones it depends upon have completed. Each
job receives the exact amount of resources required to run and
no allocated hardware resources are intentionally le� idle. How-
ever, the work�ow runtime will include the wait times endured
by each of the jobs in the work�ow’s critical path. As described
in Section 2.2, job priority systems do not consider a job until its

Figure 2: Classical batch scheduler with the waiting job
queue in its center, which jobs are ranked by the priority
engine and scheduled by FCFS and back�lling.

dependencies are resolved. As a consequence, job wait times for
explicit dependencies are equal to the ones observed by submi�ing
jobs when their dependencies are solved.

Figure 1a shows Cybershake’s execution plan submi�ed as chained
jobs. Even if both jobs are submi�ed at the same time, Job2 has to
wait four hours from the point Job1 is completed, as its priority
(and thus position in the waiting queue) does not increase from its
initial value until its dependencies are resolved. �e result is that
the work�ow runtime (i.e., start of �rst job to completion) is nine
hours, wait time is four hours (44%), while the turnaround time
(i.e., from job submission to completion) is 13 hours, eight hours
accounts for wait time (61%).

2.1.2 Workflow as a pilot job. In this approach, the execution
plan is submi�ed as a single job. �e job’s time limit is set to
the expected runtime of the critical path with no intermediate job
wait time. �e job’s resource request is the maximum resource
allocation needed at any point in the work�ow. As a consequence,
the runtime of the work�ow is the minimum possible, but some
allocated resources might be idle, and thus wasted.

Figure 1b presents Cybershake’s execution plan submi�ed as a
pilot job. �e work�ow wait time is larger than the one faced by
the chained job approach. However, the runtime is the minimum
possible as there is no intermediate wait time. In this case, the
wait time for the pilot job to start is smaller than the wait time
for the two jobs in the chained job approach. However, during the
�rst four hours of the work�ow 600 CPU cores are allocated to
the work�ow but le� unused, totaling 2400 idle core hours. �is is
the caveat of this approach, turnover is be�er but for a higher cost
of consumed resources over the same work. �is approach would
work well for work�ows where the di�erence between the minimal
and maximum width of the work�ow is not signi�cant.

2.2 Classic HPC scheduling systems
Figure 2 presents the schema of a classic HPC scheduler with a
queue of waiting jobs in its center: a) Jobs are inserted in a queue
when users submit them. b) Scheduling algorithms select which jobs
should start running and extract them from the queue. A classical
HPC batch scheduler incorporates at least the following scheduling
algorithms: FCFS (First-Come, First-Served) [6], running the �rst
job of the queue if enough resources are available; and back�lling
[11], scanning jobs in the queue in order to run them if enough
resources are available and if they would not delay the start time of
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previous jobs in the queue. Combined, they achieve high utilization
and a reasonable job turnaround times in HPC systems.

Schedulers also include internal prioritization engines to manage
turnaround time by ranking waiting jobs following some adminis-
trator set policy. Back�lling algorithms try to schedule sooner those
jobs with a higher rank (priority).

Batch schedulers also understand job dependencies (relation-
ships between jobs), and, among them, the most common one,
enforces that a job cannot start until n previous jobs end success-
fully. Dependencies can be used to to express the structure of the
jobs within a work�ow. However, we observed that in existing
HPC schedulers dependencies a�ect the job priority calculation.
For example, job age priority engines consider that a job age starts
when its dependencies are resolved. In such schema, the submission
time of the job will be its dependency resolution time, no ma�er
when it was submi�ed. In Figure 1a we show the impact of this
policy on work�ow’s turnaround time.

2.3 Related work
Complex experiments in scienti�c �elds like high-energy physics,
geophysics, climate study, or bioinformatics, require distributed
resources as computational devices, data-sets, applications, and
scienti�c instruments. �e orchestration of such processes is or-
ganized as scienti�c work�ows: collections of tasks structured by
their control and data dependencies [26]. Distributed scienti�c
work�ows have been explored in detail in the last few years. Due
to location speci�c or large resource requirements, a large portion
of the work�ows are distributed [16], i.e. their tasks run and data
stored in di�erent compute centers. In such environment, their
execution depends on user inputs, speci�c resource characteristics,
and run-time resource availability variations [9].

In other cases, work�ows are run within the same compute
facilities (single site work�ows), however their tasks might be too
large, or require too di�erent resource sets that force to run them
as di�erent entities. �is work focuses on the scheduling of the
jobs of single site work�ows.

Scheduling, automation, and execution systems for scienti�c
work�ows has been largely studied. Pegasus [4], Askalon [5], Koala
[14], and VGrADS [17] are examples of Grid work�ow managers
that includes di�erent approaches to work�ow mapping, meta-
scheduling, execution, task management, monitoring, and fault
tolerance. However, they do not propose speci�c solutions to sched-
ule the jobs of a work�ow inside each of the Grid site, which is
responsibility of the site scheduler.

�ere is also work on speci�c Grid work�ow scheduling al-
gorithms like: Myopic [25], Min-Min [13], Max-Min [13], Su�erage
[13], Heterogeneous-Earliest-Finish-Time (HEFT ) algorithm [24],
or Hybrid [20]. �ese algorithms schedule jobs within, between,
or across work�ows under di�erent strategies and objective func-
tions. However they rarely schedule regular jobs and work�ow
jobs together, which is the main focus of this work.

Scienti�c work�ow management systems for high throughput
application have become more popular in the last years. Fireworks
[8], �eueDO (QDO) [2], Falkon [15], and Swi� [29] o�er tools for
work�ow composition and management, execution, job packing
of tasks (serial, OpenMP, MPI, and hybrid), and monitoring. �ese

systems may deploy their own execution frameworks or run their
task in workers packed inside HPC jobs which, in the end are
submi�ed as a pilot job or chained jobs.

Finally, data intensive and streaming work�ows have become
very important for the data processing within large IT compan-
ies. Frameworks like Hadoop [22], Spark [28], or Heron [10] o�er
work�ow composition, management, and automation.

Clusters with batch jobs and services present the challenge of
scheduling di�erent workloads which metrics that cannot be com-
pared. In that context, multilevel scheduling approaches have ap-
peared allowing independent schedulers for di�erent workloads
(Mesos [7]), smart resource managers (Omega [21]), or cloud in-
spired two level scheduling for HPC systems (A2L2 [19]).

3 WORKFLOW AWARE SCHEDULING
Work�ow Aware Scheduler (WoAS) provides an interface that
allows users to submit work�ow jobs. As illustrated in Figure 3,
a user submits a work�ow job that is a batch job that includes a
manifest describing its internal work�ow structure (e.g., two task
jobs in the example). �e work�ow job is stored in the system’s
waiting queue.

�ere are three separate threads that work on the waiting queue
- WoAS, the scheduler, and the priority engine. WoAS is always
activated between the scheduler and priority. �us the order of
execution would be [WoAS, Scheduler, WoAS, Priority Engine].
When WoAS acts before the scheduler, it substitutes each work�ow
aware job by the task jobs described in its manifests, con�guring
the corresponding dependencies, and placing them in the same
position of the queue as the original job. �e resulting version of
the queue is the scheduler view of the queue.

Once the queue is transformed, the scheduling algorithms act
on it. In our example, back�lling selects and starts the �rst task job
of of the example work�ow, allocating exactly the resources that it
requires. A�er the scheduling phase is over, WoAS transforms the
waiting queue, removing the task jobs of work�ows that have not
started and restoring the corresponding work�ow-aware jobs. �e
current state of the queue is the priority view of the queue. �e pri-
ority engine periodically processes the waiting queue, calculating
the priority of each job and ordering jobs accordingly.

�e system continues repeating the cycle of a) recalculating the
jobs priority b) transforming the queue into its scheduler view c)
doing a scheduling pass (scheduling the second job of the example
work�ow when the �rst had completed) d) restoring the queue to
its priority view.

In this section, we describe the steps of this process in detail.

3.1 Work�ow job submission
In WoAS, users submit a work�ow as a work�ow aware job. �is is
an extension of the way work�ows are represented in the pilot job
approach. Users submit a job allocating the maximum resources
required in the work�ow for the minimum duration of its critical
path, similar to a pilot job. However, a manifest describing the
work�ow is a�ached to the batch script.

Figure 4 is an example work�ow description in JSON format
for the LongWide work�ow (de�ned in Table 2). It contains the
de�nition of all the tasks within the work�ow, including their
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Figure 3: A work�ow in WoAS scheduling model from its submission to execution start.

1 {"tasks": [
2 {"id": "SLong", "cmd": "./ SLong.py",
3 "cores": 48, "runtime": 14400.0 },
4 {"id": "SWide", "cmd": "./ SWide.py",
5 "cores": 480, "runtime": 3600.0,
6 "deps": ["SLong"] }] }

Figure 4: LongWide work�ow manifest in JSON format.

resource allocation requirement (allocated CPU cores for an es-
timated runtime), command or application to be executed (cmd),
and dependencies with other tasks (deps, where SWide depends on
completion of SLong). �is manifest information is used by WoAS
to transform a work�ow aware job (priority view) into its task jobs
(scheduler view).

3.2 Work�ow Aware Scheduling system
�e Work�ow Aware Scheduling system (WoAS) is a job waiting
queue model to bring work�ow awareness to an HPC scheduler
by o�ering di�erent job lists (views) depending on the scheduler
element that is interacting with the queue. �e dual-view enables
WoAS to enforce general scheduling behaviors such as the ones in
Section 3.3, without requiring to change the code of the scheduler
elements interacting with the queue.

WoAS controls the access to the waiting queue, and depending
on the scheduler component interacting it presents two views:
�epriority view. In this view, each work�ow aware job is presen-
ted as a single job (the one submi�ed by the user). �is view is the
one presented to the priority engine. As a consequence, the priority
and queue position of each work�ow is based on the work�ow
aware job characteristics (submission time, geometry). All tasks in
a work�ow have the same priority or start with the same priority?
�e scheduler view. In this view, each work�ow aware job is
present in the waiting queue through instances of its internal task
jobs (and corresponding dependencies) placed in the same position
of the queue where the original work�ow aware job was. �is
view is the one presented to the scheduler algorithms, so they can
schedule the work�ow task jobs individually.

3.3 Work�ow awareness in WoAS
In this section, we discuss the impact of the views model on the
work�ow awareness in the scheduler. Speci�cally, there are three
behaviors. First, work�ow task job level scheduling results in the
allocated resources are the minimum possible. Second, the inter-
mediate wait times are minimized to avoid the ones observed in
the chained job approach. Finally, this minimizes system gaming

where users don’t have to ask for strange resource requests to make
sure the tasks in their work�ows get the correct priority.

Work�ow awareness is consequence of the interaction of the
scheduler with the views and the way job’s priority information is
transferred when the queue is transformed between views.

3.3.1 Workflow task level job scheduling. In WoAS, the schedu-
ling algorithms schedule work�ow task jobs, assigning the precise
required resource allocation to each step of the work�ow.

�is is possible because the scheduling algorithms act on the
scheduler view provided by WoAS. In opposition to the pilot job
approach, even if work�ows are submi�ed as a single job, WoAS
ensures that the scheduling algorithms will see the work�ows as
their task jobs.

�is characteristic is what allows WoAS not to waste resources
to run work�ows, even if they are submi�ed as single job.

3.3.2 Minimization of the intermediate wait times. With WoAS,
when the �rst task job of a work�ow is started during the scheduling
view, the rest of the work�ow task jobs remain related by their
dependencies in the waiting queue. �is situation is similar to how
task jobs stay in the queue for the chained job approach.

However, in the chained job approach, intermediate wait times
might be very long. Classical schedulers consider jobs with non
resolved dependencies as not ”submi�ed”, so their priority does not
increase as they wait. From the moment that jobs they depend on
are completed, task jobs have to wait as they had been submi�ed,
even it had been waiting in the waiting job queue for much longer
time.

WoAS reduces intermediate wait times by propagating the pri-
ority a�ributes of the original work�ow aware job to all its tasks.
All the tasks have the same geometry priority factor and submit
time as the original work�ow aware job. As a consequence, under
the scheduling view, all the tasks in a work�ow are positioned in
adjacent positions in the waiting queue. If the �rst task job starts,
its queue position should be close to the top. As all the work�ow
task jobs have similar queue positions, once the �rst task job is
completed, the following one will still be in a good queue position
to be started. In such situations, the intermediate wait time should
be close to the time until adequate resources for that task job are
available. �is time can be signi�cantly shorter than the time that
it would take for that task job to progress from the bo�om to the
top of the priority queue in a highly utilized system.
Propagation of the priority information is performed by a com-
bination of the views and operations within WoAS.
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A work�ow aware job’s priority information is set during the
priority calculation under the priority view. In our system, the
priority of a job depends on two factors:

1) Job’s geometry factor, (smaller job, higher priority). It is cal-
culated only once in the life of a job, in the �rst priority calculation
process that considers it.

2) Job’s age factor, (older job, higher priority) is recalculated in
every priority calculation process. It depends on the time the job
was submi�ed.

Algorithm 1 Show scheduler view actions.

1 def w o a s s h o w s c h e d u l e r v i e w ( ) :
2 global w a i t i n g q u e u e
3 for j o b in l i s t ( w a i t i n g q u e u e ) :
4 i f i s w o r k f l o w a w a r e j o b ( j o b ) :
5 remove job ( w a i t ing queu e , j o b )
6 for t a s k d e s c in j o b . m a n i f e s t [ ” t a s k s ” ] :
7 new job = c r e a t e j o b ( t a s k d e s c )
8 new job . p r i o . geometry = j o b . p r i o . geometry
9 new job . p r i o . age = j o b . p r i o . age

10 new job . s u b m i t t i m e = j o b . s u b m i t t i m e
11 new job . c o p y w f j o b = j o b
12 i n s e r t j o b ( wa i t ing queu e , new job )

�e priority information of the work�ow aware job is propagated
to its task jobs through the operation woas show scheduler view,
which transforms the waiting queue into scheduler view. �e de-
tailed actions of this operation can be followed in Algorithm 1,
where each task job receives the work�ow aware job geometry
factor, age factor, and submit time.

�is propagation has three consequences for future priority cal-
culations of all the task jobs of the same work�ow. First, Future task
job age factor calculations will be based on a work�ow’s submit
time. Second, the geometry factor of a job is set, so the priority
engine does not recalculate it. �us, future task job priority calcu-
lations will be based on the work�ow aware job’s geometry, not its
own. Finally, all task jobs of the same work�ow will have the same
priority (and the same the work�ow aware job would have) since
it has the same geometry factor and same submit time.

�is ensures that all task jobs of the work�ow will have the same
priority and will occupy a similar position in the waiting queue,
which leads to the minimization the intermediate wait time,

As a �nal note, the priority propagation of non started work-
�ows is closed by the woas show priority view operation. As it
transforms the queue in its priority view, it enforces that if a work-
�ow has not started, it becomes again the same work�ow aware
job, with the same priority factors.

3.3.3 Minimize system gaming. �e priority propagation mech-
anism described in Section 3.3.2 has another side e�ect. Since task
job’s priority factors are the same as the ones of the work�ow aware
job, the waiting time of the �rst task job is equivalent to the waiting
time of a job of the geometry and submission time of the work�ow
aware job.

�is is a desired e�ect to stop users from gaming the system, i.e.
users submit work�ows where �rst job is very small, expecting a
short wait time to then run larger task jobs. �is takes advantage

of the short wait time minimization of WoAS: As the work�ow
wait time depends on the work�ow aware geometry, such schema
would only produce longer wait times.

3.4 Batch Scheduler integration

Algorithm 2 Simpli�ed classical scheduler algorithm with WoAS
calls to enable the views model.

1 def s chedu l ing loop wi th WoAS ( ) :
2 while True :
3 i f t i m e t o c h e c k p r i o r i t y ( ) :
4 d o p r i o r i t y c a l c u l a t i o n s ( )
5 i f ( t i m e t o d o f i f o ( ) or
6 t i m e t o d o b a c k f i l l i n g ( ) ) :
7 w o a s s h o w s c h e d u l e r v i e w ( ) / / WoAS s p e c i f i c
8 i f t i m e t o d o f i f o ( ) :
9 d o f i f o s c h e d u l i n g ( )

10 i f t i m e t o d o b a c k f i l l i n g ( ) :
11 d o b a c k f i l l i n g s c h e d u l i n g ( )
12 w o a s s h o w p r i o r i t y v i e w ( ) / / WoAS s p e c i f i c

WoAS was incorporated to the scheduler by modifying the core
batch scheduling loop. Algorithm 2 describes a simpli�ed repres-
entation of such process, in which a phase where jobs priority is
recalculated (line 4) alternates with another in which the schedu-
ling algorithms act (lines 8-11). In such a model, introducing WoAS
does not require changing the priority or schedulers behavior. It
requires adding just two actions to the loop, as listed below.
1) addingwoas show scheduler view before the scheduling phase
starts (line 7). �is function transforms the waiting queue for the
following code (scheduling phase) to see the waiting queue through
the scheduler view.
2) adding woas show priority view a�er the scheduling phase
starts (line 12). �is function restores the waiting queue into the
priority view, so the priority actions (if executed), act over that
view.

In Slurm, the priority and scheduling components run concur-
rently, and the queue exclusive access is enforced through a lock.
WoAS is integrated by adding the woas show scheduler view call
just a�er the scheduling code acquires the queue lock. Next, it adds
woas show priority view just a�er the scheduling code frees the
queue lock. �is ensures a behavior equivalent to Algorithm 2.

4 METHODOLOGY
We evaluate the work�ow aware system using a Slurm simula-
tor and analyze the resulting scheduling logs. In this section, we
describe our simulator setup, metrics, and experiment de�nitions.

4.1 System
NERSC’s Edison is the reference system chosen to be emulated
and to model the baseline workload. Edison is a Cray XC30 su-
percomputer, with 6,384 nodes, 24 cores per node, and a total of
133,824 cores and 357 TB of RAM, installed in 2014. It uses an Aries
interconnect and can produce a peak of 2.57 PFLOPS/s. Edison’s
hardware and workload are representative of systems and applica-
tions present in the high performance scienti�c community.
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4.2 Simulation framework
We implemented WoAS in Slurm, since it is increasingly used in
high performance systems. �is functional implementation of a
WoAS enabled Slurm will be distributed as open source. Also,
previous work by the Barcelona Supercomputing Center (BSC)
[12] and the Swiss Supercomputing Center (CSCS) [23] provided
a Slurm simulator base code. We extended the simulator for our
experiments. �e simulator allows us to run experiments up to 20x
faster than real time and run multiple simulations in parallel (up to
200).

�e Slurm scheduler is con�gured similar to current HPC sys-
tems and uses FIFO, back�lling, and it gives higher priority to smal-
ler jobs. However, to reduce complexity of the experiments and
ease analysis, di�erentiated queues or QoS levels are not con�gured
in our simulator. �ese features provide user-level conveniences
and will translate to the work�ow awareness and are not central to
the focus of our experiments.

�e core of our simulator is the Slurm scheduler. Slurm is con-
�gured to use the desired scheduling method (chained jobs, pilot
job, or work�ow aware). A�er con�guration, the simulator starts
Slurm and submits the workload to it, emulating the user behavior.
�e scheduling process is run for a con�gured simulation time (5
days plus an extra for cold start stabilization) and the scheduler
logs are registered in a MySQL database for later analysis.

An experiment is de�ned by its workload characteristics, a sche-
duling method choice, a simulated system con�guration, a target
simulated time, and a random seed. To run an experiment, the
workload is generated according to the workload characteristics.
Work�ow characteristics include the characteristics of the real HPC
system workload a�er regular jobs are modeled, a list of speci�c
work�ows present in the workload, and their submission pa�erns.

Finally, each experiment is repeated using six di�erent random
seeds (producing di�erent workloads) and their results aggregated
to ensure that analyses are not based on single non representative
experiments.

4.2.1 Workload generation. Each experiment has a workload
composed of regular (non work�ow) synthetic jobs and work�ow
jobs modeled a�er the experiment con�guration. �e regular jobs
in our workload traces are modeled a�er the historical traces from
three years of NERSC’s Edison system, [18] and [1].

�e experiment con�guration de�nes the speci�c work�ows
present in the workload, the job format for the work�ow (a pilot
job, chained jobs, or a job including a work�ow manifest), and
the submission pa�ern. Our simulator supports two work�ow
submission pa�erns - work�ow periodic and work�ow share. In
the periodic one, a work�ow is submi�ed once every con�gured
time period. In the share model, work�ows are submi�ed at a
uniform pace so the number of allocated core hours to work�ows
represents a desired share of the total core hours of the workload.

�e workload generator also includes a mechanism to pre-�ll
the system to capture a typical state of a supercomputer system.
�e lengths of the jobs for pre-�ll stage are con�gured to obtain
a job wait time baseline of four hours. Also, a job pressure con-
trol mechanism adjusts the job and work�ow submissions so the
workload job pressure (submi�ed core hours over system capacity
in a time period), is slightly over 1.0. �is ensures that simulated

system will have have enough pending work to support the wait
time baseline, but with not to much to signi�cantly increase the job
wait time as the workload scheduling progresses. Also, the simu-
lator uses a system cold-start stabilization period of one day. �is
workload is not representative of a regular day systems operation
and is discarded for the analyses.

Finally, the workload generator uses a random number generator
that can be initialized with a seed. �e same seed always produces
the exact same regular jobs and work�ow submission times, inde-
pendently of the work�ow scheduling system chosen (as long as
the same workload con�guration is used). �is is used to do a fair
comparison between di�erent scheduling techniques for the same
experiment con�guration.

�e described workload analysis and modeling tools; the work-
load generator; the framework to de�ne and run experiments; the
tools to process and analyze experiment results; and the improve-
ments on the Slurm simulator, were developed in the context of
this work.

4.3 Evaluation metrics
In this section, we present the metrics used to compare experiment
results and the method to calculate them.

4.3.1 Performance metrics. In our analyses, we use three work-
�ow (wait time, run time and turnaround time) and two system
(system utilization, job slowdown) performance metrics to compare
the pilot job, chained job, and WoAS approaches.
Work�ow wait time (wW ) is the time between the submission of
the �rst job of the work�ow and its execution start. Smaller wait
times are preferred. It depends on the load in the system (waiting
work vs. compute capacity, with higher loads implying overall
longer waiting times), the geometry (smaller jobs tend to wait less
due to back�ll), and priority (higher tends to imply shorter wait
time).
Work�ow runtime (rW ) is the time between the execution start
of the �rst job and the execution completion of the last job of the
work�ow. It includes the runtime of the jobs in the critical path of
the plan and the wait time between them. Smaller runtimes indi-
cate lesser waste between the tasks of the job. Minimum possible
work�ow runtime is the sum of the runtimes of the jobs in the
critical path (as they run back to back).
Work�ow turnaround time (tW ) is time between the submission
of the �rst job and the execution completion of the last job of the
plan. Smaller values are be�er. It is obtained as the sum ofwW and
rW , thus it depends on the factors the previous two depend on.
Actual utilization during a time period (t ) is∑

corehours Ji −
∑
wasteWi

coresS ∗t , where corehours Ji are the core hours al-
located by jobs and work�ows that are executed, wasteWi is the
number of core hours allocated by a work�ow that are not assigned
to an internal task or job where coresS are the number of cores
of the compute system. �is metric is a variation of the classical
utilization that takes into account that work�ows might allocate
resources but not use them through all their runtime. It measures
the actual work done over the system capacity, not just allocation.
�is is relevant to measure since pilot job workloads might show a
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Group A: Work�ow critical path length. B: Allocated cores, overall vs 1st job. C: Alloc. cores and rtime, overall vs �rst job.
Geometry n jobs/rtime:n h/max 240 core 2jobs/rtime:2n h/max 240n cores 2jobs/rtime:2n h/max 240n cores

Usage/Waste 240n core-h / 0 core-h. 240 + (n) ∗ 240 core-h. / (n − 1) ∗ 240
core-h

240+n(2n− 1) ∗ 240 core-h. / n(n− 1) ∗
240 core-h.

Pro�le
Table 1: Work�ows characteristics for work�ow groups: critical path size, pilot job geometry (rtime andmax cores), work�ow
tasks usage (usage), potential wasted resources (waste), and a pro�le of the allocated resources in time if the critical path is
run with no intermediate waits.

high theoretical classical utilization and hide the fact that resources
might be allocated but not used.
Job’s slowdown is measured as r J +w J

r J , i.e. job’s turnaround di-
vided by its runtime. �is metric allows us to compare the wait
time from jobs with di�erent runtimes. We use this metric to meas-
ure the impact of di�erent work�ow scheduling techniques on the
non work�ow jobs. We calculate this metric for non work�ow
jobs grouped in three di�erent sizes ([0, 48), [48, 960), [960,∞) core
hours). �e median values of this metric for each job group are
used in comparisons.

4.3.2 Metrics calculation. All the metrics of this work are ob-
tained over the aggregation of the results of multiple repetitions
of the same experiment. To keep the meaning of each metric, the
aggregation method is di�erent.

For the work�ow performance metrics, the performance values
of mi �rst work�ows of each repetition i were aggregated and
then the percentile metrics calculated. mi of a repetition of an
experiment is the minimum number of work�ows completed in the
three versions (WoAS, pilot job, and chained job) of that repetition
i . �is pre-selection is required to compare similar datasets and
these metrics cannot be calculated for incomplete work�ows.

Actual utilization for an experiment is calculated as the mean of
the observed actual utilization in the six repetitions. �is is equival-
ent to calculating the utilization of an experiment which was the
concatenation of the six repetitions. For the aggregated calculation
of the job’s slowdown, all the non work�ow job slowdown values
in the repetitions are read, and the percentile analysis is performed
on them.

4.4 Experiment sets
Two experiments sets are analyzed in this work, studying the sche-
duling techniques from a more analytical and real point of view,
resulting in 271 experiment con�gurations. Each individual experi-
ment consists of �ve days of simulated scheduling of the workload
plus an extra initial one for the system cold start.

4.4.1 Workflow characteristics study. In this experiment set, we
analyzed the e�ect on the work�ow metrics of using di�erent sche-
duling techniques to run work�ows with di�erent internal charac-
teristics. �ere is a work�ow group for each work�ow character-
istic, and inside each group, a work�ow is de�ned by n: a knob that
controls the e�ect of the work�ow characteristic, where a larger n
implies a larger e�ect.

�ese experiments allow creating a base knowledge on the ex-
pected wait time, runtime, and turnaround times for some basic
work�ow characteristics. �ese are the work�ow groups as presen-
ted in Table 1:
Work�ow critical path length, Group A: �e goal with this
group of work�ows is to study the e�ect on the work�ow metrics
of the number of tasks in the work�ow critical path (n de�nes the
number of those tasks). All work�ows in this group are chained
lists of n tasks of the same size (240 CPU cores and 1h runtime), e.g.
if n = 3 the resulting work�ow has three tasks, in which the second
depends on the �rst and the third of the second. Work�ows with
a longer critical path should su�er: a) larger di�erence between
runtime of the pilot job and �rst job in chained job and WoAS
approaches. b) more intermediate wait time periods between the
tasks in the chained job and WoAS approaches (work�ow runtime
related). c) lower priority for the pilot job and work�ow aware job
vs the priority of the �rst job in the chained job approach (work�ow
wait time related).
Allocated CPU cores: First job vs. work�ow’s maximum,
Group B: Group B is used to study the e�ect on the work�ow
metrics of the di�erence between allocated cores for the �rst job
and the work�ow maximum (n is the di�erence multiplier con-
trolling the breadth of the work�ow). All work�ows in this group
are composed of two jobs, the �rst allocates 240 cores for one hour
and the second allocates n ∗ 240 cores for one hour. When com-
bined with the work�ow scheduling approaches, a higher number
of n will induce two work�ow wait time related e�ects: a) larger
di�erence between the allocated cores by the pilot job and the �rst
job in the chained jobs and WoAS approaches. b) lower priority
for the pilot job and work�ow aware job vs the priority of the
�rst job in the chained job approach (work�ow wait time related).
�e di�erence in priority is induced by the di�erence in resource
allocation in opposition to the work�ow runtime (Group A).
Allocated CPU cores and runtime: First job vs. work�ow’s
maximum, Group C: �is group is used to study the e�ect of
the di�erence in allocated cores of the �rst job and the work�ow
maximum combined with the di�erence in runtime between the
�rst job and the minimum critical path runtime on the work�ow
metrics (n is the di�erence multiplier controlling the length and
breadth of the work�ow). All work�ows in this group are composed
by two jobs: �e �rst allocates 240 cores for one hour. �e second
allocates n ∗ 240 cores for 2n − 1 hours. When combined with
work�ow scheduling techniques, a higher number of n will induce
two work�ow wait time related e�ects: a) larger di�erence between
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Work�ow LongWide WideLong Floodplain
Geometry 2jobs/rtime: 3h/480 max cores 2jobs/rtime: 3h/480 max cores 7jobs/rtime: 32.5h/512 max cores

Usage/Waste 672 core-h / 1728 core-h 672 core-h / 1728 core-h 5624 core-h / 11016 core-h

Pro�le
Work�ow Montage Cybershake Sipht
Geometry 5jobs/rtime: 7.6h/960 max cores 5jobs/rtime: 4.5h/721 max cores 9jobs/rtime: 1.2h/384 max cores

Usage/Waste 375 core-h / 6920 core-h 1145 core-h / 2077 core-h 185 core-h / 395 core-h

Pro�le
Table 2: Work�ows characteristics for individual work�ows including: critical path size, pilot job geometry (rtime and max
cores), work�ow tasks usage (usage), potential wasted resources (waste), and a pro�le of the allocated resources in time if the
critical path is run with no intermediate waits.

the allocated cores and runtime for the pilot job and the �rst job in
the chained jobs and WoAS approaches. b) lower priority for the
pilot job and work�ow aware job vs the priority of the �rst job in the
chained job approach (work�ow wait time related). �e di�erence
in priority is induced by the di�erence in resource allocation and
work�ow runtime.

In this experiment set, six work�ows of each work�ow group are
de�ned (n ∈ {1, 2, 4, 8, 16, 32}, group C was not analyzed for n > 8,
resulting work�ows were too big and would over�ow the system).
For each individual work�ow (16 in total), we create a workload in
which a work�ow is submi�ed with a �xed inter-work�ow time.
Each experiment is run using the pilot job, chained jobs, and WoAS
techniques to compare the resulting metrics across techniques and
values of n.

4.4.2 Performance comparison. In these experiment set we com-
pared the performance of the di�erent work�ow scheduling tech-
niques for two synthetic and four real work�ows, which are presen-
ted in Table 2. �e synthetic one (LongWide and WideLong) are the
minimum building units of any work�ow (a serial phase followed
by a parallel one and vice-versa). �e real ones allow testing our
technique against more realistic workloads with has a particular
characteristic: �xed jobs with a complex pro�le (Floodplain), many
small grouped tasks (Montage), large work�ow with two large par-
allel stages (Cybershake), and a small work�ow with a complex
pro�le shape and many small jobs (Sipht).

In the experiments, work�ows are submi�ed using the work�ow
share approach with seven percentages: %1, %5 %10, %25, %50, %75,
%100. �e experiments with lower ones (%1 to %25) allow under-
standing the performance of the techniques of realistic scenarios
with increasing work�ow importance. �e larger values (%50, %75,
%100) allow understanding what happens in a system when the
workload is dominated by work�ows over regular jobs. �e result-
ing 42 experiments are run using the pilot job, chained jobs, and
WoAS techniques.

Similar experiments were run using the work�ow period sub-
mission (periods 1/12h, 1/2h, 1/h, 2/h, 6/h). �ese allow comparing

the work�ow metrics in cases in which the work�ow presence is
not important enough to in�uence in the whole system behavior.

5 RESULTS AND ANALYSIS
�is section presents the results and analyses of our simulation
experiments. Our evaluation focuses on: a) A study of the im-
pact of work�ow characteristics on the work�ow metrics obtained
with di�erent work�ow scheduling techniques (Section 5.1). b) A
performance comparison for the di�erent scheduling techniques
(Section 5.2).

5.1 Work�ow characteristics study
Figures 5, 6, and 7 present the observed median work�ow wait
times, runtime, and turnaround time for the experiments with
work�ows from Groups A, B, and C (described in Section 4.4.1).
Each horizontal block corresponds to a di�erent work�ow group.
Inside each block, adjacent bars represent the measured median
value for the same experiment con�guration but run with di�erent
scheduling approaches (pilot job, chained jobs, and WoAS). �e
x-axis corresponds to n, a value that de�nes the actual work�ow
used in each work�ow group (De�ned in Section 4.4.1). In each
group a higher value of n indicates that the special characteristic
of the work�ow group is more present.

5.1.1 Workflow wait time. For group A work�ows (top block
of Figure 5), we observe that the relationship between the median
wait times observed for the pilot job and WoAS approaches are sim-
ilar, with slightly shorter wait times for WoAS at all the work�ow
path sizes (n). Any di�erence in work�ow wait time are related to
di�erences in back�lling eligibility since priority and CPU cores
allocation of the pilot job and the �rst job are the same.

In contrast, the chained job work�ow has the same FIFO and
back�lling eligibility as WoAS (both �rst jobs have the same geo-
metry), but higher priority (job size used for priority is bigger in
WoAS). Hence, work�ows run as chained jobs show much shorter
wait time (almost half at n = 32) as the critical path and work�ow
aware job sizes increases and the priority gap increases.
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Figure 5: Wait time evolution as a dimension (one per hori-
zontal group) of the work�ow group is increased.

Figure 6: Runtime evolution as a dimension (one per hori-
zontal group) of the work�ow group is increased.

Similarly, work�ows in groups B and C (second and third block
of Figure 5) exhibit the shortest wait times when run as chained
jobs, intermediate as WoAS, and much longer (specially for n ≥ 16),
as pilot jobs. �e di�erences are due to the priority and back�lling
eligibility of the work�ow starting job in each group: higher priority,
smaller job (more eligible) in chained job; lower priority, smaller
job in WoAS; and lower priority, larger job (less eligible) in pilot
job.

5.1.2 Workflow runtime. In Figure 6, we observe that all work-
�ows run as pilot jobs or under WoAS present a very similar median
work�ow runtime, close to the expected minimum runtime for each
value of n. �is is expected for the pilot job, since all the tasks are
run within a job with no internal wait times. We see that WoAS is
able to perform as well; inter-job wait times between jobs when
using WoAS is close to 0, e.g work�ows in group A, n = 32, are

Figure 7: Turnaround time evolution as a dimension (one
per horizontal group) of the work�ow group is increased.

composed of 32 jobs (see Table 1) and the median of the accumu-
lated 31 intermediate wait times accounts only for three minutes
which constitutes 0.1% of the total runtime.

When run as chained jobs, group A work�ows show longer accu-
mulated inter-job wait time as the number of jobs in the work�ow
critical path increases. �is matches the observation that most
schedulers do not consider a job as truly submi�ed until its depend-
encies are resolved. Each extra job in the critical path adds an extra
wait time to the runtime,.

Similarly, runtime of work�ows in groups B and C are the min-
imum possible when run as pilot jobs, and close to minimum when
using WoAS. When run as chained jobs, the increasing runtimes
show the e�ect of the wait time of the second job on the runtime:
As n increases, the geometry of the second job grows (slower in B
than in C) and its wait time becomes longer.

5.1.3 Turnaround time. In Figure 7, we observe that for all work-
�ow groups the chained jobs approach presents the longest turn-
around times; followed by the pilot job and WoAS approaches,
which shows the shortest (or equal to pilot job).

Work�ows run as a work�ow aware job present bigger gains in
turnaround time over the pilot job approach as they face signi�c-
antly shorter wait times (in our experiments group B and n ≥ 4).

5.1.4 Summary. We observed that running a work�ow as chained
jobs results in the shortest wait time but longest runtime. Running
it as a single pilot job, produces the shortest runtime but longest
wait time. WoAS produces intermediate wait times and close to
shortest runtimes.

Also, results show that WoAS produces the best turnaround times
in all the scenarios. Finally, a work�ow aware job can be considered
signi�cantly be�er performing than the pilot job approach even
if the turnaround time is similar, since the former does not waste
resources for work�ows with varied resource requirements (more
in the next section).
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Figure 8: Work�ows turnaround time speed up when sche-
duled as WoAS over pilot (blue) and chained job (pink). Six
work�ows, six di�erent work�ow shares. �e dashed line is
speedup=1, Value > 1 implies better performance of WoAS.

5.2 Performance comparison
In this section, we extend analyses in Section 5.1 to four real and
two synthetic work�ows. In this section we focus on work�ow
turnaround time, and the impact of the scheduling techniques over
the system (actual utilization) and non-work�ow job (slowdown)
performance.

In this experiment set work�ows are submi�ed using work�ow
share (described in Section 4.2.1) to set the percentage of workload
core hours corresponding to work�ows.

5.2.1 Workflow performance. Figure 8 presents the median work-
�ow turnaround time speedup of WoAS relative to the chained jobs
and pilot job approaches. �e axis shows percentage of workload
core hours contributed by work�ows. A bar value X = 1 means
that the median turnaround time for WoAS and the corresponding
method are the same. A bar value X > 1, means that the median
turnaround time median for the corresponding approach is X times
the one observed with WoAS.
Compared to the chained job approach, WoAS showed very
large speed ups for long complex work�ows like Cybershake (≈2x)
and Sipht (≈3s). For the rest of the work�ows (shorter critical
path), showed smaller but clear speedups in most cases (e.g ≈1.4x
for WideLong, ≈1.9x in Montage). Floodplain has relatively small
jobs reducing the e�ect of the intermediate wait times (1.2x-1.3x
speedup).

Also, LongWide work�ows showed shorter turnaround times
when run as chained jobs in the 75% and 100% scenarios (< 1.0
speed ups). A�er analyzing system’s actual utilization and overall
wait time, it was observed that, when using WoAS in the scenarios,
the wait time baseline is more elevated, and utilization is lower
(20% and 30% less). �is is likely related to the work�ow shape.
�e work�ow consists of a long job (48 cores, 4 hours runtime)
and a wide job (480 cores running, 1 hour) where the long job can
become a barrier that cannot start until a number of previous jobs
end. �e long job also stops other jobs from being back�lled since

Figure 9: Work�ows turnaround time speed up when sche-
duledwithWoAS over the pilot (blue) and chained job (pink).
Six work�ows, six di�erent work�ow periods.

they would delay its start. �is wait creates unused free resources
gap that results in low utilization.

For work�ow shares over 25%, Sipht experiments show turn-
around speed-ups under one and get smaller as the work�ow share
increases. In these scenarios, the chained jobs approach achieved
lower utilization values (≈10-20% less) and less work�ows would
complete than WoAS. Sipht is the work�ow with more jobs, but
very small resource allocation. In a work�ow saturated scenario
the scheduler manages a large number of active jobs, a�ecting its
performance, and thus capacity to utilize the system. Since WoAS
represents all work�ows that have not started yet as a single job,
the scheduler requirements to deal with such workload should be
smaller.

Both situations are very unlikely in a real system, where the
work�ow includes di�erent types of work�ows and regular jobs,
that can be used in e�cient back�lling.
Compared to the pilot job approach, In Figure 8, WoAS shows
turnaround times orders of magnitude shorter than the pilot job.

�e long pilot job turnaround times are due to their long wait
times. �is is an artifact of the workload generation that is designed
to contain the same amount of work i.e., workloads contain the
exact same jobs and work�ows, submi�ed at the same time. When
run with the chained job technique, that work is meant to produce
a job pressure of ≈1.0 over the system. However, when run with
pilot jobs, the same work allocates more core hours because of
the potentially wasted resources, increasing the job pressure. For
example, in a 100% work�ow share workload, the job pressure when
work�ows are pilot jobs is 1.0+k , being k the percentage of wasted
core hours in the selected work�ow).

In summary, for the same amount of work, the single job ap-
proach presents much longer turnaround times and loads the system
signi�cantly more than the other approaches (more in Section 5.2.3).

Finally, we asses if the previously observed short turnaround
times for isolated work�ows run as pilot jobs are possible for the
work�ows in this section. A set of experiments were performed,
reducing the work�ow presence in the workload by submi�ing
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Figure 10: Relative di�erence on slowdown
(withWork f lowSlow/noWork f lowSlow) for jobs allocat-
ing [0, 48) core hours. Tested for three real work�ows and
di�erent work�ow shares.

one work�ow in every time period. In Figure 9, WoAS presents
similar or shorter turnaround times than the pilot job approach,
con�rming that for isolated work�ows, the pilot job approach also
shows short turnaround times.

5.2.2 Job fairness. Figure 10 presents the observed median slow-
down for small jobs (under 96 core hours) over di�erent work�ow
shares (x-axis). A value of one means that the median slowdown for
non work�ow jobs is the same as in the case where no work�ows
are present. A number of two represents that the observed median
slowdown is two times the one observed when no work�ows are
present. It is important to note that adding work�ows changes the
workload composition and small variations in the slowdown are
considered normal.

Figure 10 shows that the presence of work�ows a�ects the regu-
lar job’s slowdown. All experiments using the pilot job approach
showed the biggest increases in slowdown (up to 10x), followed
by WoAS (up to 8x), and the chained job ones (up to 2x). �is
di�erence is specially signi�cant for Montage work�ows run as
pilot jobs, where just a 1% work�ow share induces a three times
bigger median slowdown, and almost 10 times slowdown with a 5%
work�ow share. �e observed slowdown is due to the elevation of
the wait time baseline due to the > 1.0 job pressure from the pilot
jobs. In opposition, when the workload contained 1% of Montage
work�ows but were scheduled using WoAS there was no e�ect on
non-work�ow jobs.

�e experiments run with chained job approach show the smal-
lest changes in slowdown with maximum variations of 2x for over
50% work�ow share scenarios. �e chained job scenarios are the
best possible fairness scenario for each work�ow and work�ow
share since work�ows are handled as regular jobs. It is signi�cant
that regular job’s slowdown seems to stop growing a�er work�ow
shares of 25%, even decreasing for �oodplain. �is e�ect can be
explained by the lower priority of the �oodplain jobs, that are larger
than a good share of the workload jobs.

Gain(%) 1% 5% 10% 25% 50% 75% 100%
�oodP 1.80 5.22 14.46 29.29 44.53 51.64 64.47
longW 2.30 8.33 18.93 30.84 40.25 31.99 27.18
wideL 0.33 10.64 19.74 32.35 48.22 57.19 66.16
cybers 1.66 7.72 13.92 25.58 36.72 44.45 52.83
sipht 2.55 11.41 18.16 34.85 42.77 37.27 35.83

montage 12.36 44.90 60.30 72.34 80.13 82.14 85.26
Table 3: Di�erence of actual utilization of WoAS over the
pilot job approach for di�erent work�ow shares.

In the case of the work�ow aware approach, in experiments
with smaller shares (≤ 10%) jobs slowdown is almost the same as
the case with zero work�ows. For the rest of experiments (except
Montage over 25%), WoAS shows only slightly bigger slowdowns
(< 2x ) than the chained job approach. Big increases on slowdown
(over 4x) on Montage and large work�ow shares (> 25% ) point that,
for workloads heavily dominated by work�ows with large resource
allocations, WoAS might have a large impact on smaller jobs. In
system heavily dominated by work�ows, regular jobs might not be
as important. �is is an e�ect of the back�lling limited queue pro-
cessing depth (common performance optimization practice) where
non-work�ow jobs have to climb up the queue by waiting longer.
A technique �ltering non ready queue jobs before the scheduling
processes are started, could alleviate this problem.

Finally, slowdown analysis was performed for all the work�ows
in Table 2 and for medium ([96, 480) core hours) and large ([480,∞)
core hours) jobs. Since results were similar, the data was not in-
cluded due to space limitations.

5.2.3 System utilization. We compare the actual utilization
between running the same experiment using work�ow aware sche-
duling, pilot jobs, and chained jobs.

Data shows that experiments using WoAS and chained jobs
presente utilization over 90% and di�erences ≤ 5%. As we already
analyzed in Section 5.2.1, the only exception are the experiments
with the LongWide work�ows and work�ow shares of 75% and
100% - chained jobs show over 90% utilization, but the WoAS ones
show ≈70% and ≈60%.

Compared with the pilot job approach, WoAS has much higher
levels of actual utilization as the work�ow share increases.

�us, we see that WoAS does not waste resources while pro-
ducing good turnaround times (Section 5.2.1), which indicates its
suitability as a work�ow scheduling technique.

5.2.4 Summary. For workloads with moderate work�ow pres-
ence (< %50 core hours) WoAS presents the shortest work�ow
turnaround times, keeps high system utilization (over 90%), wastes
no resources, and regular jobs slowdown is equivalent to the best
case scenario.

For work�ow dominated workloads, WoAS showed the shortest
turnaround times and high utilization except for the LongWide
experiments. However, slowdown of regular jobs higher than the
chained job cases.

As a �nal note, it is possible that WoAS could perform be�er
in the dominated work�ow scenarios if some queue �ltering was
added (not considering jobs with dependencies for queue construc-
tion) and with workloads with more work�ows diversity. However
that is subject of future work.
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6 CONCLUSIONS
We propose Work�ow Aware Scheduling (WoAS), a new model
for a batch queue scheduler that enables unmodi�ed pre-existing
scheduling algorithms to take advantage of the �ne grained re-
source requirements to produce short turnaround times without
wasting resources. We implemented WoAS and integrated it in
Slurm, and our implementation will be available as open source.
We evaluated WoAS by simulating NERSC’s Edison supercomputer
and its workload, modeled a�er the study of three years of its real
job traces.

Our results show that with WoAS, work�ows show signi�cantly
shorter turnaround times than the chained job and single job ap-
proaches, and no wasted resources. In traces that have moderate
work�ow presence (< 50% core hours), using WoAS, FCFS and
back�lling achieves turnaround times as short or shorter than sub-
mi�ing work�ows as single jobs and much shorter than as chained
jobs (up to 3.75x speedup), while keeping the system highly utilized
(over 90% and no allocated idle resources). It also produces utiliz-
ation gains over the single job approach (e.g. 60% for Montage
work�ows, 10% work�ow share) and, has no or negligible impact
on the slowdown on non work�ow jobs.

Similarly, in workloads dominated by work�ows (≥ %50) experi-
ments show that work�ow performance is similar to the one stated
above. However, other scheduling mechanisms, like the queue
depth limits in the back�lling algorithm, may a�ect WoAS increas-
ing the non work�ow job slowdown, specially in the presence of
large work�ows (e.g. 7x in Montage, 75% share). �is e�ect could
be eased by �ltering not ready jobs in the waiting queue, which is
future work.

We conclude that WoAS work�ow scheduling performs signi�c-
antly be�er than current approaches to executing work�ows on
HPC systems while posing no signi�cant drawbacks.
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