
Towards Understanding HPC Users and Systems: A NERSC Case Study

Gonzalo P. Rodrigoa,1, P-O Östberga, Erik Elmrotha, Katie Antypasb, Richard Gerberb, Lavanya Ramakrishnanb

aDept. Computing Science, Ume̊a University SE-901 87, Ume̊a, Sweden
bLawrence Berkeley National Lab Berkeley, CA 94720, USA

Abstract

The high performance computing (HPC) scheduling landscape is changing. Previously dominated by tightly coupled MPI
jobs, HPC workloads are increasingly including high-throughput, data-intensive, and stream-processing applications. As
a consequence, workloads are becoming more diverse at both application and job level, posing new challenges to classical
HPC schedulers. There is a need to understand the current HPC workloads and their evolution towards the future in
order to perform informed scheduling research and enable efficient scheduling in future HPC systems.

In this paper, we present a methodology to characterize workloads and asses their heterogeneity, both for a particular
time period and as they evolve over time. We apply this methodology to the workloads of three systems (Hopper,
Edison, and Carver) at the National Energy Research Scientific Computing Center (NERSC). We present the resulting
characterization of jobs, queues, heterogeneity, and performance that includes detailed information of a year of workload
(2014) and evolution through the systems’ lifetime. Among the results, we highlight the observation of discontinuities
in the jobs’ wait time for priority groups with high job diversity. Finally, we conclude by summarizing our analysis to
establish a reference and inform future scheduling research.

Keywords: workload analysis, supercomputer, HPC, scheduling, NERSC, heterogeneity, k -means

1. Introduction

High performance computing (HPC) supports scientific
research by providing capacity to run large simulations
or solve large mathematical problems. Such applications
largely rely on the tightly coupled MPI model, which, as
a consequence, has dominated HPC workloads. However,
the workload configuration is changing as HPC systems’
use evolves. For instance, some scientific fields like biology
or astrophysics increasing rely on analysis of large datasets.
Also, as compute capacity keeps growing, simulations pro-
duce larger datasets that require analysis. Finally, semi-
conductor advances enable real experiments to produce
higher resolution data that requires processing. Pushed by
these use-cases, workloads are becoming more diverse, in-
creasing the importance of high-throughput, data-intensive,
and stream-processing applications. These applications
differ in performance models and target objectives from
the classical parallel tightly coupled. As a consequence,
current HPC schedulers might not produce optimal de-
cisions since they support diverse workloads which confi-
gurations differ from what batch schedulers were designed
to support (uniform and MPI dominated).

Supporting the new workload landscape and its future
evolution requires new scheduling models that need to be

Email addresses: gonzalo@cs.umu.se (Gonzalo P. Rodrigo ),
p-o@cs.umu.se (P-O Östberg), elmroth@cs.umu.se (Erik Elmroth),
kantypas@lbl.gov (Katie Antypas), ragerber@lbl.gov (Richard
Gerber), lramakrishnan@lbl.gov (Lavanya Ramakrishnan)

1Work performed in part at the Lawrence Berkeley National Lab.

investigated. Such research must be informed by a charac-
terization of the state, with a focus on diversity, of current
workloads in HPC centers and their evolution. However,
existing work on workload modeling [1] characterizes sys-
tems that are too old, too small, or not representative of
the top HPC systems. Also, previous work did not focus on
the workload diversity, a new trait present in recent work-
loads. Thus, there is a need to investigate the workloads in
current HPC centers to understand users and applications
requirements and project them in the future.

In this work, we present a methodology to character-
ize HPC workloads in detail. It includes classical work-
load analysis methods such as value distribution analysis
on job variables (e.g., degree of parallelism or runtime),
system utilization estimation, or overall wait time analy-
sis. However, it includes an innovative method to analyze
job geometry (allocated resources and runtime) diversity.
This method employs k -means clustering to identify dom-
inating groups of jobs in the workload according to their
geometry (runtime and allocated CPU cores). Under this
analysis, workloads with more job geometry clusters are
considered more diverse, and vice versa. Also, job groups
can be mapped on the waiting queues (priority categories)
to analyze jobs diversity within each queue. Consequently,
an analysis of the correlation of queue diversity and wait
times for jobs of different sizes is performed. This analy-
sis verifies that jobs’ wait time match the expected values
according to priority and system configuration (i.e., larger
jobs should wait longer, higher priority jobs should wait

Preprint submitted to Journal of Parallel and Distributed Computing 22nd March 2017



shorter) or if they deviate due to job heterogeneity.
We apply this methodology to the workloads of three

systems (Hopper, Carver, and Edison) at the National
Energy Research Scientific Computing Center (NERSC)
[2]. The output of these analyses is a reference of the work-
loads of three systems representative of others at the HPC
community: Carver is a terascale IBM high performance
cluster built on commodity hardware supported by an In-
finiband interconnect; Hopper is an early petascale Cray
supercomputer based on AMD processors; and Edison is
a more modern and energy efficient petascale Cray super-
computer based on Intel processors. The results include
a detailed analysis on the jobs, queues, and system beha-
vior in each year over their lifetime for the Hopper and
Carver and in 2014’s for Edison. Yearly data of Hopper
and Carver is compared to produce a trend analysis that
allows to observe the evolution of their lifetime. These
results establish a first data-point to predict future HPC
workloads to designing future resource management mo-
dels.

Our workload analysis methodology can also be used
to support informed short-term and long-term decisions at
HPC centers. Periodical workload analyses can be aggre-
gated in a growing trend analysis that can reveal changes
in the user behavior and system performance. Also, the
boundary geometries (i.e. runtime and degree of paral-
lelization) in workload’s job clusters might be used as a
starting template to define priority groups (queues) to
avoid mixed queues and minimize discontinuities in ex-
pected job wait time behavior.

Specifically, in this paper:

• We propose analysis methods to understand and com-
pare the workload diversity: how self similar are jobs
in the workload and their mapping on the prioritiza-
tion queues.

• We define a method to analyze the wait time of jobs
depending on their geometry, queue priority, and di-
versity.

• We provide a detailed job, queue, performance, and
diversity characterization of the NERSC workload,
and their evolution over time. The results allow to
understand the users, system behavior, and the effect
of queue heterogeneity on jobs’ wait time.

• We present a summary of analysis results and com-
pare them with characterizations of other existing
HPC workloads.

The rest of the paper is organized as follows. We
present background on HPC systems, scheduling, and work-
load analysis in Section 2. A high level description of our
method and the analyzed systems is presented in Section 3.
The details of the methodology and its application to the
NERSC workloads are described in Sections 4 to 7. Fi-
nally, we provide a summary of our results together with
conclusions in Section 8.

This work includes and extends previously published
work from the same authors [3], [4].

2. Background

This section describes the challenges in the HPC com-
munity that motivate this work and presents background
on parallel job scheduling and workload analysis relevant
to understand our methodology and results.

2.1. Challenges in HPC scheduling

The challenges of resource management in HPC are
changing. New application characteristics and technolo-
gical shifts are bringing new concepts and requirements to
the scheduling models and system architectures. In this
section, we highlight some workloads’ changes that stress
the importance of our analysis methods.

Stream applications are becoming more present in HPC
systems. Scientists conduct experiments that would bene-
fit from real-time processing of large amounts of data on
HPC systems (e.g. X-Ray Micro-diffraction on Advanced
Light Source at LBNL [5]). Real-time processing could
potentially be performed by providing resources through
advance reservations. Advance reservations, however, have
a negative impact on the overall utilization, showing the
need for real-time scheduling (i.e. low-latency allocation
of resources, with no previous reservation as a response
to a real-time event). As another step in application evo-
lution, scientific experiments in fields like biology, earth
sciences, or high energy physics are increasingly relying
on data analysis to extract useful information from large
experimental datasets, or results from large simulations
[6], [7]. These applications increase the importance of
data-intensive computational models in HPC workloads,
or the composition of different applications through work-
flows (e.g., simulation followed by results analysis). These
changes motivate us to analyze the workloads at super-
computers to understand their current characteristics.

The importance of stream and data intensive applica-
tions point at an increasing diversity in workloads not only
dominated by large tightly coupled parallel jobs. Diversity
might affect the performance of the scheduler, which go-
verns the execution of applications in HPC systems. For
example, the impact of the scheduling decisions is different
across applications: e.g. delaying one job belonging to a
workflow may have a significant impact on its overall run
time, while delaying a stream job that has to be rapidly
scheduled might render it useless. Also, schedulers are un-
aware of the different architecture-related constraints in
applications (e.g. I/O bound performance, loosely coupled
jobs, and data locality). However, information about such
constraints is required for the scheduler to perform op-
timal placement decisions to maximize the applications’
performance. Understanding the impact of the application
diversity on the system motivates our workload heteroge-
neity analysis.

2.2. Scheduling

HPC schedulers optimize job placement to achieve the
highest system utilization possible with a reasonable turn-

2



System Vendor Model Built Nodes Cores/N Cores Memory Network TFlops/s Service

Hopper Cray XE6 2010 6,384 24 154,216 212 TB Gemini 1280 Jan’10
Edison Cray XC30 2013 5,576 24 133,824 357 TB Aries 2570 Jan’13
Carver IBM iDataPlex 2010 1,120 8/12/32 9,984 147 TB Infiniband 106.5 Apr’10

Table 1: Edison, Hopper, and Carver characteristics

around time according to the job priority. The most com-
mon base technique in schedulers is FCFS (First-Come,
First-Served) [8]. With FCFS, jobs are selected in or-
der, reserving the associated resources required for a job.
However, with FCFS, the scheduler has to drain the sys-
tem in order to schedule a large job, leading to resource
fragmentation that reduces the overall utilization. Thus,
backfilling is normally used to move jobs forward to fill re-
source gaps produced by the FCFS. Backfilling provides an
ordered search in the waiting queue to map jobs to empty
resource windows even if they are not at the head of the
queue [9].

The quality of the results of the backfilling algorithm
depends on the user’s wall clock time estimation [8]. If
a job wall clock time is overestimated, the scheduler will
assign an unnecessary large resource window, reducing the
opportunities to schedule a job through backfilling. On the
contrary, if wall clock time is underestimated (i.e., runs
over its limit), the system will kill the job resulting in
lost work. These effects motivate the jobs wall clock time
accuracy (relationship between estimated and actual wall
clock time) characterization presented in Section 4.2.

Finally, a job’s turnaround time depends on its prior-
ity (influencing its progress on the scheduler wait queue in
each scheduling pass), geometry (jobs requiring more re-
sources are harder to schedule), and requested resource
load (how many jobs compete for the same resources).
However, job diversity in the queues might affect this re-
lationship. In Section 6.2 we present an analysis of the
possible impact of these factors (including job diversity)
on the job’s wait time.

2.3. Related work on workload analysis

Previous work on scientific Grid and HPC workloads
characterization is found in the Grid Workloads Archive
[10] and the Parallel Workload Archive [1]. The archives
contain job and performance characteristics (run time, par-
allelism, inter-arrival time, wait time, disk space, and
memory), but their analyses overlook the workload he-
terogeneity. Also, analyzed systems are either at least 10
years old or significantly smaller than the current top HPC
systems. Our work extends them by addressing jobs’ he-
terogeneity and performing analyses on large, more recent
systems (e.g. Edison was deployed in 2014 and still ranks
60 in the Top 500 list in February 2017).

Job heterogeneity has been observed in industrial work-
load diversity analysis [11], which introduces k-means as
a tool for job similarity clustering. This work inspired our
workload diversity analysis method for HPC workloads,
which we complemented with per queue analysis and a

new methodology to compare the degree of heterogeneity
across systems and system states.

A previous analysis [12] on the applications run on Ho-
pper in 2012 characterizes the importance of the different
applications run on the system, with an initial insight on
the jobs’ geometry and memory requirements.

3. Methodology

In this section we describe the three systems analyzed
(their characteristics, workload, scheduling model, and con-
figuration), our data source (size, time span, format), ana-
lysis framework (motivation for analyzed variables), and
trend analysis methodology.

3.1. System descriptions

In this work, the results of characterizing the workload
of three HPC systems are presented. In this section, we
describe the characteristics of these systems to enable the
discussion about the applicability of our results to other
systems.

3.1.1. System characteristics

NERSC is a HPC center at Lawrence Berkeley Na-
tional Lab, that has the mission to provide computing in-
frastructure and tools for scientists performing research
of relevance to the DOE (Department of Energy). Our
work analyzes the various years of real jobs from three of
NERSC’s systems: Carver, Hopper, and Edison. These
three systems were selected because their different hard-
ware characteristics and origin in the timeline of HPC sys-
tems evolution, which can be observed in Table 1. Carver
is a terascale IBM iDataPlex Linux cluster [13] deployed in
April 2010. Its configuration is the closest to commodity
hardware servers of the three systems and it is supported
by an Infiniband interconnect. Hopper and Edison are spe-
cialized Cray supercomputers with custom interconnects
[14]. Hopper is a petascale Cray XE system, based on
AMD processors and a Gemini interconnect, and deployed
in 2010. Edison is a newer, more power efficient petascale
Cray XC30, constructed with Intel processors supported
by a Aries interconnect and deployed in 2014. Thus, these
systems allow us to capture the workload characteristics of
high-end clusters and supercomputers, belonging to diffe-
rent HPC system generations and optimized for slightly
different applications.

On the resource management side, all three systems use
the Moab scheduler [15, 13, 16] running atop the Torque
resource manager [17]. Edison’s workload manager was
replaced by Slurm at the end of 2015.

3



3.1.2. Workload

Over 5000 users and 700 distinct projects use NERSC
resources [18, 12]. The workload is composed of applica-
tions from various scientific fields like Fusion, Chemistry,
Material Science, Climate Research, Lattice Gauge The-
ory, Accelerator Physics, Astrophysics, Life Sciences, and
Nuclear Physics.

In addition to serving typical MPI workloads, Carver
provides a serial queue [19]. The serial queue allows users
to submit and execute jobs with a very low degree of paral-
lelism (i.e., one single core). Carver has 80 compute nodes
allocated to serial jobs. Serial queues were added to Ho-
pper and Edison in late 2014. The serial queue on Edison
and Hopper is configured via a super-job run under the
special Cluster Compatibility Mode (CCM). There are a
total of 15 compute nodes each allocated to run serial jobs
on Edison and on Hopper. Serial queues contain jobs run-
ning long time (limited to 48 hours) on a single core. The
purpose of the serial queue is to increase resource utiliza-
tion density. It serves packs jobs on the same node that
do not benefit from parallelism and which performance is
either not critical or rarely affected by resource sharing.

The conclusions of this work are only based on the job
related information of the workload. Run time characte-
ristics of applications, execution schema or other variables
were not considered or analyzed in this study.

3.1.3. Scheduler characteristics

The configuration of a system scheduler has an impact
on the system performance (i.e., utilization, wait time)
and the workload shape: e.g., jobs allocation sizes will
cluster around the allowed values in submission queues. In
this subsection, we present the configuration of the analyze
systems scheduler to provide context for later analyses.

First, node sharing is only enabled for nodes executing
jobs from the serial queue to avoid performance degrada-
tion [20]. In order to keep the same baseline, we consider
cores as the degree of parallelism unit in our analysis.

In all systems there is a distinction between the queues
chosen at submission time (Torque) and the queues that
the scheduler use for priority calculation (Moab). Users
submit jobs to the Torque submission queues. Moab has
its own queue configuration - the execution queues. Torque
translates the queue into Moab’s execution queues and
passes the job to the scheduler. Submission queues can
be mapped to a single or multiple execution queues. For
example, jobs of up to 10 hours of runtime maybe sub-
mitted to the same submission queue, to be sorted into
two execution queues with ranges of [0, 5), [5, 10) runtime
hours. Table 2 shows queue properties that govern the
scheduling decisions for our three systems. The properties
are explained below:
Maximum wall clock time (Torque): Each queue has
an upper limit for a job’s estimated wall clock time speci-
fied by the user at submission time. If a job’s estimated
wall clock time is longer than this limit, submission fails. If

a job runs longer than the user estimated wall clock time,
the job is terminated.
Number of cores (Torque): Each queue has a pre-
defined minimum and maximum limit of a job’s requested
number of cores. Submission of a job allocating a number
of cores outside this range will fail.
Queue priority (P ) (Moab): Each queue in the system
is assigned a priority (represented as an integer where a
higher number represent a higher priority).
Eligible jobs limit per user (E) (Moab): Only the
first E jobs of the same user in the same execution queue
are eligible for scheduling. This can affect a job’s wait
time. For example, if a user would submit 25 jobs to
the serial queue on Carver, only the first 20 jobs will be
considered for scheduling. The last five jobs will only be
considered to be scheduled after the first five jobs have
finished. This can impact wait times for the jobs where
the last five jobs may have significantly higher wait times
than the other 20 jobs.

The execution queues do not exist as separate data
structures inside Moab. All jobs are stored in a single
queue. When a job is passed to Moab, it is inserted in
its job waiting queue with a job priority of zero. In every
scheduling pass, the job priority is recalculated by adding
a value, which depends on the associated execution queue
priority. If a job is in a higher priority queue, the job prior-
ity will grow faster and it will be eligible for execution more
quickly. The analysis of the impact of the queues’ charac-
teristics on jobs wait time is presented in Section 6.2.

3.1.4. Queues configuration

The analyzed system’s scheduler re-calculates the jobs
priority depending on the queue they are submitted to.
Since the configuration of such queues affect the overall
system behavior, we present their configuration in detail
in this section.

Table 2 presents the execution queue configuration of
Edison, Hopper, and Carver used in the analysis. It covers
each queue’s job maximum run time (Wall Clock Time),
job allowed allocations in numbers of cores (Cores), num-
ber of eligible jobs allowed to be scheduled simultaneously
(E), and the priority of the queue (P). This information
allows us to understand the reasons for different wait time
behaviors between queues.

The batch queue policies influence the jobs execution
order. These policies changed slightly through the studied
period. To simplify the analysis, we used the settings that
were most common through the period of study. Also,
some queues were filtered out of this study as they repres-
ented too little of the workload, or were related to system
maintenance or tests.

Edison and Hopper map their queues on a single set of
resources (independent for each system). However, Carver
queues are mapped in sets that partly overlap: general
set (1080 nodes), matgen set (64 nodes, subset of the gen-
eral set), xlmem set (two nodes with large memory capa-
city), and serial set (80 nodes, not overlapping). Different

4



Hopper Wall Cores E. P. Edison Wall Cores E. P. Carver Wall Cores E. P.
Queues clock Queues clock Queues clock

bigmem 24h. 1-8,856 1 0 matgen low Unk 1-256 66 0
ccm int 30m. 1-12,288 2 1 cm int 30m. 1-12,288 2 1 matgen prior Unk 1-256 66 10
ccm queue 96h. 1-12,288 16 1 ccm queue 96h. 1-16,368 16 0 matgen reg Unk 1-256 66 1
debug 30m. 1-12,288 2 1 debug 30m. 1-12,288 2 1 debug 30m. 1-256 1 2
low 48h. 1-16,392 6 -3 low 48h. 1-16,392 6 -3 low 24h. 1-256 3 -2
premium 48h. 1-49,152 1 2 premium 36h. 1-49,152 1 2 xlmem sm 72h. 8 1 0
reg 1hour 1h. Unk. 8 0 reg 1hour 1h. Unk. 16 0 xlmem lg 72h. 32 2 0
reg big 36h. 49,153-

98,304
2 1 reg big 36h. 49,153-

98,304
2 1 reg big 24h. 257-512 1 0

reg long 96h. 1-1,536 4 0 reg long 168h. 1-128 1 0
reg med 36h. 16,369-

49,152
4 1 reg med 36h. 16,369-

49,152
8 1 reg med 36h. 129-256 2 0

reg short 6h. 1-16,368 16 0 reg short 6h. 1-16,368 24 0 reg short 4h. 1-128 4 0
reg small 48h. 1-16,368 16 0 reg small 48h. 1-16,368 24 0 reg small 48h. 1-128 3 0
reg xbig 12h. 98,305- 2 0 reg xbig 12h. 98,305- 2 1 reg xlong 504h. 1-32 1 0

146,400 131,088 interactive 30m. 1-64 1 2
thruput 168h. 1-48 500 0 killable 48h. 1-16,368 8 0 serial 48h. 1 20 -

Table 2: Hopper, Edison, and Carver queue characteristics. Jobs have to be within certain limits to be accepted in a queue: requested runtime
upper limit (wall clock time) and accepted number cores range (Cores). Eligibility (E.): Maximum number of jobs from the same user in the
same queue which are considered in jobs priority recalculation. Priority (P.): Queue priority.

queues have access to different sets: matgen queue jobs can
only run on matgen resources (but jobs from other queues
can use them when they are available). xlmem nodes can
be only used by xlmem jobs. This implies that different
queues may not present the same ratio of job core-hours
requested over resources’ core-hours available. How this
difference may impact jobs wait time is studied in Sec-
tion 6.2.

The serial queue jobs allocate one core per job and are
executed on shared nodes (more than one job per node).
Also, this queue has exclusive access to the serial resource
set so it does not compete with any other queue. Thus,
wait times of the serial queue should not be compared
with other queues.

3.2. Data Source

All workload analysis is performed on the job sum-
mary entries from the systems’ Torque logs. The data in-
cludes 1 year and 1,357,366 jobs for Edison, 4.5 years and
4,326,870 jobs for Hopper, and 4.5 years and 9,508,054
jobs for Carver. The raw data size is 45 GB, which, after
filtering and parsing, is reduced to 6 GB of net data.

3.3. Analysis Framework

The analysis framework is composed of a set of scripts
that express the data pipeline to process the log data.
The developed data pipeline is divided into three parts.
The first is the data extractor, which retrieves the log
files from the NERSC repository, parses them, eliminates
invalid entries and inserts them in a MySQL database.
The second component is a Python API to insert, manip-
ulate, and retrieve the data from a MySQL database. The
MySQL database is indexed to facilitate the queries based
on multiple fields. The third component is the analysis
toolkit. It implements the logic to retrieve, analyze, and

visualize the data for all the analyses. A specific plotting
library was developed to support the graph generation.
The code consists of 14K Python lines using the scientific
libraries SciPy and NumPy combined with the plotting
library MatPlotLib [21]. All analyses were run on an Intel
i7 Quad core 8 GB RAM desktop computer. The database
is hosted on a department server at Berkeley Lab.

Our analysis focuses on understanding the variables of
the workload from the user (i.e., job) and system (i.e.,
queues and performance) perspectives.

The job perspective includes:
Job size: includes wall clock time, degree of parallelism,
and resulting compute time allocation. These parameters
define the system boundaries’ requirements and job gra-
nularity.
Wall clock time accuracy: represents how accurate are
the user estimations on the jobs runtime. The variable
measures the quality of the information used by the sche-
duler in its job planning.
Inter-arrival time: models the time between the sub-
mission of two jobs. It represents the load to be managed
by the scheduler and the overall wait time. For instance,
for the same job sizes, a smaller inter-arrival time repres-
ents a larger job load.
Job diversity: measures how different the geometries of
jobs in the workload are. It includes the analysis of dom-
inant job geometries in the workload.

The queues and their configuration represent the map-
ping of the prioritization policies to the workload job mix.
The study includes:
Queue significance: represents the impact of each queue
on the overall system. It allows to understand how the
properties of each queue contributes to the overall system
behavior according to their importance.
Queue job diversity: analyzes the how self similar are

5



the jobs within each queue in terms of geometry. This ana-
lysis is relevant because execution queues allow the system
scheduler to prioritize jobs depending on their geometry.
However, the existing queues might not represent the most
significant types of jobs (by geometry) present in the job
mix. This analysis is focused on two objectives: under-
standing the diversity of the jobs across the entire work-
load, and similarity of jobs contained in the same queues.

The performance perspective covers the system utiliz-
ation and job wait time. Additionally, the job wait time
is studied from system, queue, and job geometry points
of view. This study allows us to understand the how the
effectiveness of the priorities for different job geometries in
different queues might be affected by job diversity in the
queues.

3.4. Trend analysis

In this work, the workload of Carver and Hopper was
analyzed in detail for each year of their lifetime. To sim-
plify interpreation, the detailed analysis is only presented
for 2014. However, the relevant results of all years were
aggregated in the trend analysis, presenting the evolution
of Carver and Hopper workloads through their lifetime.
Edison’s trend analysis was not performed because not
enough workload data was available.

In this work, we focus on understanding the evolution
of the system’s workload, overall performance, and user
behavior. As explained in Section 3.3, workload trend cov-
ers the evolution of the job geometry (wall clock time and
degree of parallelism). Overall performance is analyzed
through the evolution of job wait time. User behavior is
analyzed by observing the evolution of the wall clock time
accuracy.

Finally, since the trend is performed by analyzing the
workload in sequential time periods and aggregating the
results over a time line, an adequate period had to be
chosen. The size of the workload periods is calculated by
detecting repeating user patters in the workloads through
Fourier transform analysis on the number of tasks submit-
ted per hour [22]. Results of such analysis are described in
Section 7.1 and the dominant detected cycle was one year.

4. Job Characterization

In this section we present the workload analysis of the
jobs of Edison, Hooper, and Carver in 2014. This analysis
is performed with special attention to job geometry, user
submission patterns, and job diversity on all three systems.

4.1. Job geometry

Job’s geometry analysis allows to observe the patterns
in jobs resource allocation and analyze the job mix that the
scheduler manages. All variables are analyzed by calculat-
ing their value distribution and consequence Cumulative
Distribution Function (CDF). This allows to understand

Job Distribution Edison Hopper Carver

%Jobs Wall Clock < 2 h. 88% 86% 87%
%Jobs Width < 240 codes 69% 75% 99%
%Jobs Width ≤ 1 Node 39% 37% 92%
%Jobs Alloc. ≤ 1 core-h. 19% 26% 77%
%Jobs Alloc. ≥ 1K core-h. 7% 8% ∼8%

Table 3: Detailed job characteristics distribution analysis

if jobs are dominantly small or large, if theirs sizes con-
centrate around certain values, or if the job mix includes
enough jobs of smaller sizes to allows high system utiliza-
tion. We follow to present the results for each of the job
variables.
Job wall clock time. Figure 1a, shows the Cumulative
Distribution Function (CDF) of the job wall clock time
for the three systems in 2014. In the case of Hopper, we
observe jobs running up to 160 hours, with a high con-
centration running under two hours. Table 3 shows an
overview of the job characteristics’ distribution analysis.
It shows that 86-88% of the jobs on all three systems run
for less than two hours. For Carver, a large number of the
jobs have a wall clock time well under one hour; in fact,
60% of the jobs run for less than 13 minutes.

Additionally, all three CDFs present steep slopes around
30 minutes and 6, 12, 24, and 36 hours (better observed
in a non-log scale version of the graphs), numbers that
are similar to the queues’ configured wall clock time limit.
These limits are similar across the three machines (more
details in Table 2).
Cores per job. Figure 1b presents the distribution of
cores allocated to jobs on the three systems. It represents
the number of cores requested and allocated to a certain
job, and does not include any information on the actual
usage of the cores. On Hopper and Edison, requests for a
single job range from 24 (1 node) to over 100,000 cores (i.e.
close to the full capacity of the systems). A small number
of cores are requested for Hopper’s jobs: 75% under 240
cores (10 nodes), and 37% of all jobs run on a single node
(Table 3). Edison presents a similar pattern with 69%
of the jobs running on less than 240 cores and 39% on a
single node. Carver shows a different trend from Edison
and Hopper. On Carver, many jobs run on a small number
of cores: 99% run on 240 cores or less, and 92% of all jobs
run on a single node.
Allocated core-hours per job. Figure 1c shows core-
hours allocated for the jobs in the system. The figure
shows that Hopper and Edison core-hour allocations are
similar. Jobs on Hopper and Edison are significantly larger
than those on Carver: 99% of Carver jobs individually
consume less than one core-hour, in comparison with 42%
on Edison and 46% on Hopper. On the other extreme, we
can observe that almost 10% of Edison and Hopper jobs
individually consume more than 1,000 core-hours.

4.2. Job’s characteristics

In this section we study other variables of the jobs that
depend on other external agents. This includes the user’s

6



(a) Wall clock Time (h.) (b) Cores allocated (c) Core-hours

Figure 1: Job geometry characterization on Hopper, Edison, and Carver. a) Significant percentage (Edison: 87%, Hopper: 82%,
Carver: 87%) of the jobs run for 2h or less. b) 69% of Edison, 75% of Hopper and 99% of Carver jobs allocate 240 cores or less.
c) Carver’s jobs allocate significantly fewer core-hours.

(a) Inter-arrival time (s.) (b) Wall clock time accuracy (c) Wait time (h.)

Figure 2: Job characterization on Hopper, Edison, and Carver. a) Carver receives significantly more job submissions per time unit
than the other systems: 40% of jobs are followed by another job within one second. b) 11% of Edison and 10% of Hopper jobs
run over the requested time. Carver: 92% of the jobs run under 50% of requested wall clock time. c) Jobs that wait less than 3h
to be executed: Edison (67%), Hopper (60%), Carver (79%).

submission pattern (inter-arrival time and wall clock time
accuracy) and job’s overall wait time (which depends on
the scheduler configuration). A more detailed analysis of
the job’s wait time is presented in Section 6.2.
Inter-arrival time. Figure 2a represents the CDF for the
inter-arrival times on Edison, Hopper, and Carver. The
inter-arrival time measures the time elapsed between the
arrival of consecutive jobs in a system, which can affect
the granularity of scheduling and help to understand the
load on the schedulers.

Edison and Hopper have very similar distributions: 90%
of the jobs have inter-arrival times under two minutes. The
remaining 10% are distributed in the 1500-2000 seconds
(25-33 minutes) range. On the other hand, more than
95% of Carver’s inter-arrival times are under 25 seconds.
As the CDFs of the three systems are compared, Carver’s
inter-arrival times are shorter than those for Edison and
Hopper. Thus, when compared to Edison and Hopper, we
observe that more jobs are submitted to Carver queues
during the studied time period.
Wall clock time accuracy. For each job we study the
difference between the actual and the requested wall clock
times. The accuracy is defined as W

W r , where W is the

actual wall clock time of a job and Wr is the wall clock
time that the user requested for the job. The accuracy will
be close to one when the estimation is good, and closer to
zero when the job running time is overestimated. If the
job runs over the requested time, the job will get preemp-
ted. However, this is caught during the next scheduling
pass. Thus, we see values over one when jobs run over the
estimated time.

As discussed in Section 2.2, the wall clock time ac-
curacy affects the backfilling decision quality. Figure 2b
presents the distribution of the wall clock time accuracy
values for the three systems studied. The initial steep slope
of the Carver CDF shows that it executes many jobs that
use much less than the requested wall clock time. Edison
and Hopper have a more linear CDF for values between
zero and close to one. However, in all systems we observe
jobs with an accuracy slightly above one (as they exceed
their allocated run time and are terminated). We see that
the percentage of jobs that run out of wall clock time is
higher on Edison (11%) and Hopper (10%) than on Carver
(2%). Approximately 60% of Edison and 66% of Hopper
jobs run 50% or less of the requested time. On Carver,
around 93% of the jobs run 50% or less of the requested

7



time.
Wait time. Figure 2c presents the distribution of job
wait times under 24 hours (jobs with longer wait times are
not included in this graph). The figure shows that Hopper
has more jobs with longer wait times, followed by Edison
and Carver. Considering all the jobs in the system, we see
that 61% of Hopper jobs, 67% of Edison jobs, and 80%
of Carver jobs have a wait time of less than three hours.
Further analysis of the wait time values is presented in
Section 6.2.

4.3. Job diversity

The job diversity analysis is based on a machine learn-
ing technique and extends a previous work about job group-
ing within clusters [11]. We construct job geometry tuples
that contain job wall clock time and number of cores allo-
cated. Before performing analysis, the tuples are norma-
lized (whiten [23]) to reduce the effect of the value mag-
nitudes on the clustering process. In the analysis, the tar-
get is to find the smallest number of k-means clusters [24]
among the job geometry tuples where the variation coeffi-
cient (standard deviation divided by the mean) is at most
1.1. If jobs are similar, the method will group them in a
small number of clusters. Jobs in more diverse workloads
are grouped in larger numbers of clusters.

When invoked, k -means produces k clusters from an in-
put dataset and a list of k centroids used as search starting
points. However, k -means produce k clusters, not the min-
imum possible, and does not guarantee that the clusters
are not disperse. As a consequence, k -means must be in-
voked with different k sizes and different start centroids
to obtain a minimum possible number of non dispersed
clusters. Figure 3 illustrates the algorithm that searches
for the minimum clusters in the job geometries, by trying
different k values and random centroid points.

It starts by whitening the input job tuples (line 5) to
reduce the effect of the value sizes on the clustering. Then,
the process to find the minimum number of k -means min-
imum cluster search is repeated 10 times with different
starting centroids. In each trial (lines 7-37), the process
starts by producing an initial random centroid set of two
points. Then, starting at k = 2 the algorithm tries to
find k non dispersed clusters, increasing the value of k
in each unsuccessful trial (lines 10-37). For each k, k
clusters are produced (line 14) and considered disperse
if their variation coefficient is larger than 1.1 (lines 15-
23). Each disperse cluster is divided, i.e., two centroids
close to the cluster centroid are produced and added to
the obtained cluster lists, increasing the resulting k size
in one (line 21). In summary, the obtained clusters are
reviewed, if they are not too dispersed, they are left as
they are, otherwise they are split, increasing k in one per
cluster split. Then, the search is repeated with the new
centroids as starting points. The process is repeated until
non dispersed clusters are found (lines 26, 27) or the found
k is larger than the minimum size of previously observed
non dispersed clusters (lines 11,12). The algorithm does

Figure 3: Minimum number of k -means cluster search algorithm for
a list of job geometries.

1: (repetitions, trialsSmallerK)← (10, 10)
2: maxCulsterV ar ← 1.1
3: minKFound← −1
4: (finalClust, finalCent)← (None,None)
5: normJobs← whiten(allJobs)
6: for i← 1, repetitions do
7: seed = genRandomSeed()
8: k ← 2
9: cent← genRandomCentroids(k, seed)

10: for j ← 1, trialsSmallerK do
11: if k >= minKFound and minKFound 6= −1 then
12: break
13: end if
14: Clust, cent← kMeans(normJobs, cent)
15: cvList← calcCV ForClusters(Clust, cent)
16: newCentroids← []
17: for l← 0, len(cvList) do
18: if cvList[l] <= maxCulsterV ar then
19: newCentroids.append(cent[i])
20: else
21: newCentroids.append(splitCentInTwo(cent[i]))
22: end if
23: end for
24: if len(cent) = len(newCentriods) then
25: (finalClust, finalCent)← (clust, cent)
26: if minKFound = len(finalCent) then
27: break
28: end if
29: if minKFound = −1 then
30: minKFound← len(finalCent)
31: else
32: minKFound← min(k, len(finalCent))
33: end if
34: end if
35: cent← newCentroids
36: k ← len(newCentroids)
37: end for
38: end for
39: return finalClust, finalCent

not guarantee that the obtained number of clusters is the
minimum possible, however it produces a local minimum.

Figure 4 shows the results of the clustering search me-
thod for Edison’s jobs in 2014. This graph is a scatter plot
of the jobs where each job is represented by a colored dot.
The x -coordinate corresponds to the job’s wall clock time
and the y-coordinate to the number of cores allocated to
the job. Note that the y-axis is in logarithmic scale. The
execution queue of the job is identified by the color of the
dot. The clusters’ centroids are represented by black dots,
while the color boxes are the boundary jobs observed in
each cluster (minimum and maximum wall clock time and
number of cores).

Table 5 shows the results of the clustering. Eight clusters
were found for Carver, 11 for Edison and 12 for Hopper.
This implies that Carver has a more homogeneous job set
compared to Edison and Hopper As noted in the previous
section, 70% of Carver jobs come from the serial queue,

8



Figure 4: Result of the job clustering method for Edison 2014 with
8 clusters. Jobs are mapped on queues and clusters: Each dot is
a job and dot color indicates the queue. Black dots are cluster
centroids and color boxes are the surrounding jobs belonging to the
same cluster. Clusters are sets of jobs with similar geometry.

defined for single core jobs with long run times.

5. Queue Characterization

In the analyzed systems, job priorities are calculated
depending on the queues that they are assigned to, also
different job geometries were limited to be submitted to
certain queues. As a consequence, queue configuration
has an effect on how user submit jobs and how job pri-
orities are distributed. In this section, we analyze the re-
lationship between queue configuration, job geometry, and
submission behavior.

5.1. Queue significance

The first step in analyzing the queue configuration and
behavior is to understand the relevance of each queue in
the system. For this, Figure 5 shows the normalized view
of the number of jobs and core-hours per execution queue
on Edison, Hopper, and Carver. The interpretation of this
data is based on the configuration presented in Table 2.

On Hopper, the debug queue contains approximately
20% of the total jobs. The debug queue is typically used
for testing and has a wall clock time limit of 30 minutes.
The queue reg small contains 30% of the jobs and approx-
imately 56% core-hours. The queue reg med presents a
lower job count (< 5%) and core-hours (∼ 15%). The
thruput queue admits 168 hours jobs and multiple submis-
sions from the same user (600). However, its contribution
to the total system utilization is less than 10% of jobs and
2% of core-hours.

Edison is very similar to Hopper, with the reg small
queue having ∼ 40% of the jobs, and ∼ 40% of the core-
hours contributed by the debug and reg 1h queues.

Carver shows a different pattern. The serial queue
contains more than 70% of the jobs, which consumed less

Figure 5: Normalized view of the number of jobs and core-hours per
queue in Edison, Hopper, and Carver.

than 10% of core hours. This percentage matches with the
fact that this queue has exclusive access to 80 out of 1,180
total nodes (∼ 7%) that are used for computation. The
reg small queue (∼ 40%) and matgen reg (∼ 15%) account
for the majority of the remaining core-hour usage.

5.2. Queue Diversity

The minimum number of clusters and their boundaries
provide an overall view on the job diversity, and a pos-
sible recommendation for queue configuration. However,
it gives no information about the job mix for a queue, i.e.
how similar are the jobs in each queue. Thus, we define the
queue homogeneity index as a new metric to compare the
diversity of the jobs in a queue. After the clustering pro-
cess, it is possible to identify each job’s original cluster.
Since jobs from different clusters are significantly diffe-
rent, a queue which jobs largely map on a single cluster
will contain more homogeneous jobs than a queue whose
jobs map to many clusters. The queue homogeneity index
is the percentage of queue jobs that are mapped to the
queue’s dominant cluster, i.e. the cluster to which most
jobs of the queue belong. For example, a queue maps jobs
to three clusters with the following shares: 20%, 30%, and
50%. The cluster that contributes the most has 50% of
the jobs and, as consequence, the queue homogeneity in-
dex is 50%. A higher index value indicates that many jobs
are mapped to the same cluster and are thus geometrically
similar to each other, while a lower index value means that
the queue’s jobs are more heterogeneous.

Table 5 present the queue homogeneity indices for the
all the queues in Edison, Hopper, and Carver. This data
allows to identify which queues contain more diverse job
mixes and are candidate to be reviewed and, if needed,
divided into smaller better defined queues. In Edison,
reg big, reg med, and reg big are the more homogeneous

9



Edison 11 c. Hopper 12 c. Carver 8 c.

Queue /1 Queue /1 Queue /1

ccm queue 0.46 bigmem 0.31 debug 0.32
debug 0.63 ccm queue 0.45 interactive 0.35
killable 0.40 debug 0.70 low 0.99
low 0.53 interactive 0.85 matgen low 0.62
premium 0.27 killable 0.45 matgen prior 0.66
reg 1hour 0.71 low 0.59 matgen reg 0.68
reg big 0.96 premium 0.40 reg big 0.70
reg med 0.98 reg 1hour 0.69 reg long 0.31
reg short 0.42 reg big 0.66 reg med 0.82
reg small 0.42 reg long 0.50 reg short 0.62
reg xbig 1.00 reg med 0.86 reg small 0.26

reg short 0.39 reg xlong 0.55
reg small 0.36 serial 0.87
reg xbig 1.00 usplanck 0.54
thruput 0.77 xlmem lg 0.24

xlmem sm 0.58

Table 4: Queue homogeneity indices for each machine: share of num-
ber of jobs belonging to its dominant cluster. In light green queues
with indices in (0.50, 0.75] interval, in darker green queues with in-
dices (0.75, 1.00].

queues while premium is the more diverse (0.27). In in-
termediate values (close to 0.50), reg small appears to be
diverse (0.42) and since its impact of the system is large
(40% of jobs and core-hours), it is a good candidate of fur-
ther study for division. Among Hopper’s queues reg small
is quite diverse (0.36) and significant in the system (50%
of jobs and core-hours), becoming a good candidate for
revision. In Carver, reg small (0.26) and significant (40%
of core-hours) and should also reviewed.

Systems have different queue configurations and, in or-
der to compare different systems with different workloads,
a global metric is established. It aggregates the queue ho-
mogeneity index of all the queues by taking into account
the queues’ importance relative to the entire workload in
the system.

Figure 5 presents two criteria for the impact of a queue
on the system: number of jobs contained and amount of
core-hours contributed. The former is useful to understand
scheduler behavior, while the latter represents the fraction
of the machine time the queue occupies. Missing one as-
pect of the system may give an incomplete picture, so we
define two more metrics:
Job homogeneity index is calculated as a linear com-
bination of the queue’s homogeneity index. The coeffi-
cients are the share of jobs contained by the correspond-
ing queue. For example, Queue1 has a homogeneity index
of 0.6 and contributes 30% of the system’s jobs. Queue2
has a homogeneity index of 0.4 and contributes 70% of the
jobs. The Job homogeneity index is thus calculated as:
0.6 · 0.3 + 0.4 · 0.7 = 0.46
Time homogeneity index is calculated as a linear com-
bination of a queue’s homogeneity, but in the time dimen-
sion. The coefficients are the shares of core-hours contrib-
uted to the system by the corresponding queue. In the
example of Queue1 and Queue2: Queue1 contributes 30%

Edison Hopper Carver

Clusters 11 12 8
Job homogeneity idx. 0.51 0.57 0.82
Time homogeneity idx. 0.64 0.49 0.51

Table 5: Queue analysis results: for each machine, minimum number
of k-mean clusters discovered in the jobs and homogeneity indices.

of the system’s jobs, and represents 80% of the core-hours
of the system. Queue2 contributes 70% of the jobs that
represent 20% of the system’s core-hours. The Time homo-
geneity index is thus calculated as: 0.6·0.8+0.4·0.2 = 0.56.

We understand that larger indices imply that jobs in
queues are more homogeneous, and policies are able to do
more precise job prioritization for certain types of jobs. A
lower index implies the existence of queues that contain
a diverse job mix, which probably should be divided in
more narrowly defined queues. The queue homogeneity
index defined above can be used to determine what and
how queues should be modified. These indices are not
absolute measurements, and can only be used to compare
similar systems (like the ones studied) or the same system
during times.

Table 5 shows the calculated homogeneity indices for
the three NERSC systems. The job homogeneity index
shows that Carver is the system in which queues contain a
reasonably uniform job mix. The time homogeneity index
produces a different ordering: Edison, Carver, Hopper.
This implies that the uniform queues on Carver have many
jobs, but they are very small in terms of the total number
of core-hours. On Hopper the uniform queues contains
fewer jobs, but they contribute a significant part of the
system’s core-hours.

This analysis can be used to improve the job sort-
ing across queues. From the point of view of core-hours,
Edison has the best sorted queues. The queue reg small
is the largest contributor in terms of core-hours and jobs,
however, only 42% of the queue jobs are mapped to the
same cluster, implying a high diversity within the queue.
The reg small queue allows jobs up to 48 hours long and
between 1 and 16,368 cores in size. Dividing this queue
into subqueues with sub ranges of wall clock times or cores
could have a positive impact on the time homogeneity in-
dex of Edison, and support improved job prioritization on
the system.

6. Performance Characterization

In this section we study the performance of the systems
from the perspectives of both resource providers (utiliza-
tion) and users (wait time). This study includes a more
detailed analysis on the jobs’ wait time with a focus on its
relationship with queue organization and job diversity.

6.1. Utilization

Facilities such as NERSC report the utilization of their
resources periodically. The 2014 NERSC report calculates

10



Figure 6: Job wait time median per queue depending on the requested cores. Aggregated on top: priority per queue, median of the wall clock
time of queue jobs, jobs per queue (normalized), core-hours per queue (normalized).

System Edison Hopper Carver

TSU 0.91 0.90 N/A

tTSU 0.87 0.80 0.88

Table 6: Total System Utilization (TSU) and theoretical Total Sys-
tem Utilization (tTSU). tTSU is under TSU since it does not take
into account system maintenance down times.

the Total System Utilization (TSU) of Hopper and Edison
as:

TSU =
core-hours used in period

core-hours available in period
(1)

The available core-hours are calculated subtracting main-
tenance time (full and partial) and other temporal resource
reductions. Down times are tracked manually and the TSU
is calculated for reporting reasons. The available logs for
this analysis do not contain system availability informa-
tion. Thus, we calculate the theoretical Total System Util-
ization (tTSU) as:

tTSU =
core-hours used in period

time period ∗ maximum system capacity
(2)

By definition, tTSU will be less than or equal to TSU.
We present the reported TSU and the tTSU in Table 6.
Carver’s TSU was not available for 2014.

6.2. Job wait time

Previous analysis (Section 4.2) presents a coarse grained
analysis of jobs’ wait time. To understand the performance
of the system, it is important to also understand wait times
relative to job geometry and queue priorities. In this sec-
tion, we detail our wait time distribution analysis, i.e. we
calculate the median wait time of jobs grouped by queues
(and thus corresponding priority) and job geometry. User
wall clock time estimations of the systems are inaccurate

(Section 4.2), as a consequence we use the number of cores
requested as job geometry metric for this analysis.

We present job wait time for the three systems as heat
maps in Figure 6. For each system, queues appear on
the x -axis, ordered by priority. The y-axis represents a
non-linear categorization of the possible numbers of cores
allocated to jobs. Each square contains the wait time me-
dian (in seconds, minutes, hours, or days) for a particular
queue that was allocated the cores specified on the y-axis.
White regions indicate that there were no jobs with the
specific queue and cores combination. A darker tone or
red represents longer wait times (24 hours or longer), and
a lighter tone or yellow represents shorter wait times. The
priority of each queue is specified above the heat map and
below the bar graph. The bar chart on top shows the num-
ber of jobs and core-hours contributed by each queue to
each system.

In all systems, we observe that the graph is darker at
the top left corner and lighter at the bottom right. Thus,
jobs in the same queue with a larger degree of parallelism
have longer wait times. The effect follows from the fact
that the wider jobs are harder to fit during scheduling.
Also, jobs with similar number of cores have shorter wait
times in queues with higher priorities. While these capture
the general trend, we look more closely at the anomalies
in the heat map.

On Hopper, the low queue has the lowest priority (−3)
and longer wait times than most of the other queues. The
queues with priority zero, reg 1h, reg xbig, and reg short,
present the expected behavior: longer wait times than
the ones with priority one and shorter than the one with
−3. The bigmem, reg long, reg small, and thruput queues,
present wait times significantly higher. The big mem queue
is the gateway for the nodes with more memory (384 large
memory nodes vs. 6,000 regular nodes). The jobs in this
queue may be experiencing higher wait times because they

11



compete to use a smaller resource set. The reg long and
thruput queues contain longer jobs than the rest with the
same priority (also much longer than the ones in low), and
thus might not be able to take advantage of backfilling. Fi-
nally, the reg small long wait times may be related to its
large contribution of jobs and core-hours. The queues with
higher priorities than zero show shorter wait times.

Wait time for jobs allocating different number of cores
but in the same queue presented unexpected values (i.e.
longer wait times for larger number of cores allocated). In
some cases it could be related to the jobs’ wall clock time,
as is the case for the big mem queue. Its wait time for the
64 to 511 cores range is two days, while between 512 to
1023 cores is seven hours. We analyzed the median of wall
clock times in those ranges, obtaining one day and three
hours respectively. The jobs allocating 64 to 511 cores
were probably harder to backfill due to their longer wall
clock times, increasing the wait time.

Edison exhibits a similar behavior to Hopper. The
queues killable and ccm queue have longer wait times, be-
cause their job’s run-time is longer than the jobs in other
queues with similar or lower priority. The reg small queue
has the maximum jobs and core-hours used on Edison, res-
ulting in possibly longer wait times of its jobs. The jobs
with higher priorities behave as expected, showing shorter
wait times.

Carver displays different trends compared to Hopper
and Edison. The serial queue has exclusive resources and a
median wait time of five minutes. The matgen queues has a
pool of resources, but those might be used by other queues.
The queue also has a high job count, and thus higher wait
times than queues with lower priority. The xlmem queues
are similar to Hopper’s bigmem, and meant to serve jobs
with large memory requirements. However, their resource
assignment is different: On Hopper, bigmem jobs can only
be executed on nodes with large memory capacity, but
these nodes can also execute jobs from other queues. In the
case of Carver, only the jobs from the xlmem queues can be
run in the special nodes. This exclusive access, combined
with xlmem’s low job count and core-hour contribution,
explains why these queues’ median job wait time is under
four minutes.

Three queues (reg big, reg long, reg xlong) have prior-
ity zero and longer wait times than the other queues. The
reg small queue jobs consume more core-hours than any
other queue (apart from serial), which may be the reason
for the long wait times in this queue. Finally, the queues
with higher priorities behave as expected.

In general we observed that queues that did not display
expected queue wait time patterns had low homogeneity
indices (under 60%). In particular, the queues on Hopper
with such indexes should be further studied. More predict-
able wait times could be possible by dividing these queues
according to the observed job clusters.

Figure 7: Fourier decomposition of the series of the jobs submitted
per hour for Edison, Hopper, and Carver to detect dominant sub-
mission cycle. Note the logarithmic scale for the frequencies. Most
powerful frequencies highlighted with a black arrow and its corres-
ponding period.

7. Trend Analysis

After analyzing the system behavior during a particu-
lar period of time, this section presents a similar analysis
but performed over the lifetime (Jan 2010 to June 2014)
for Hopper and Carver. The purpose is to observe if there
is any clear evolution pattern.

7.1. Time Patterns and analysis granularity

Choosing a time period to slice the data was the first
step of this analysis. A Fourier transform analysis was per-
formed on the number of tasks submitted per hour, since
this analysis allows us to detect cycles in the user behavior
[22]. The result can be observed in Figure 7: Black arrows
point to the most powerful frequencies correspond to the
periods of 1 day, 1 week, 3 months, 6 months. This data
matches human period times (days, working weeks). Each
project has a number of core-hours to be used in a year,
divided in 4 allocation quarters in which the project has
to consume (or forfeit) the corresponding allocated time.
The strong pattern around the allocation year led us to
choose one year as the trend analysis period time.

7.2. Job geometry

The evolution of the first job geometry variable is presen-
ted in Figure 8 as a box plot of job wall clock time for
each system in each year. Hopper shows a significantly
low wall clock time median in 2010 (< 1 minute), which
might be related to the fact that it was a smaller testbed
system that year. In 2011, the median increased to ∼ 5
minutes and subsequently increased to ∼ 12 minutes by
2014. Carver shows a different trend: the median, up-
per and lower quartile decrease effectively over the period
studied. The median decreased from ∼ 20 minutes (2010)
to ∼ 6 minutes (2014). However, there is some variation

12



Figure 8: Job wall clock time for each each workload year. Trend:
Hopper jobs become longer, Carver jobs shorter. Majority of jobs
under one hour.

Figure 9: Allocated number of cores for each workload year. Trend:
Hopper jobs allocate less cores. In 2011-2013, most Carver jobs used
one core.

from year to year: It is observed that in the first year in
production, Carver ran longer jobs than Hopper, a fact
that slowly changed in 2014 when Hopper ran longer jobs
that Carver. More generally, Hopper presents fairly short
jobs, as the highest upper quartile is around the one hour
value. Carver presents a similar behavior as the upper
quartiles of the last years are under one hour.

The evolution of the width of jobs (number of alloca-
ted cores per job) is shown in Figure 10. For Hopper, the
median decreases from 100 cores (2010) to under 30 cores
(2014). Carver presents an opposite pattern. Except for
2010, the median of the rest of the years is one core, show-
ing the predominance of single core serial jobs. In 2014,
the upper quartile increased to 8 cores.

The core-time i.e., total clock time across all cores was
also studied. In the case of Hopper, it remains nearly the
same through time with a median of ∼ 20 core-hours and
the upper quartile slightly under 200 core-hours in most
years. In the case of Carver, it slowly decreases from a
median of almost 1 core-hour to ∼ 6 core minutes (and a

Figure 10: Allocated core-hours for each workload year. Trend: No
changes on Hopper. Carver jobs become smaller.

Figure 11: Jobs’ wait time evolution for each workload year. Trend:
All systems increase wait time. Carver lower wait time in 2011.

last upper quartile of 1 core-hour).
In summary, Hopper jobs (shorter jobs, with a higher

degree of parallelism, bigger than Carver’s) seem to be
showing an increase in their wall clock time. As the effect-
ive job’s core-hours remain the same, they must be using
fewer cores. Carver jobs (longer jobs, lower degree of par-
allelism, fewer core-hours than Hopper’s) have decreasing
wall clock time and use more cores, but the increase is
not sufficient to keep the job’s core hours steady over the
years.

7.3. Job wait time

According to Figure 11, for Hopper, the median of the
wait time is steadily increasing from under 100 seconds
to over 20 minutes (a pattern also present in the upper
and lower quartiles). On Carver, the effective wait time
increases over the four years from ∼ 10 minutes in 2010 to
∼ 20 minutes in 2014. However we notice a zigzag pattern
trend in between. In 2011, Carver presented significantly
shorter wait times, which could be attributed to a known
increase of resources in the system. The steady increase of

13



Figure 12: Jobs’ wall clock time accuracy evolution for each workload
year. In all systems wall clock time remains low.

wait time over the lifetime fits with the growth of the user
community of the systems.

7.4. Wall clock time accuracy

The wall clock time accuracy is calculated as
real/estimated wall clock time. The results are shown
in Figure 12. Hopper does not show a clear trend: 2011
to 2013 presents a higher accuracy than 2010 and 2014,
with a median variation between 0.2 and 0.4. For Carver,
the median decreases over time, with significant changes
between 2010 (∼ 0.25) and 2011 (<0.1). In 2014, the me-
dian is under 0.1 and the last quartile it is under 0.2. For
Carver, there is a clear pattern of worse estimations as the
time proceeds. In general, both systems present very low
values with medians under 0.4.

Wall clock accuracy time does not show a noticeable
pattern beyond the fact that accuracy is low. On Hopper,
50% of all jobs run less than 40% of the estimated time.
Similarly on Carver, 50% of all jobs less than 20% of the
estimated time. These values indicate that the decisions
made by the backfilling algorithms are based on inaccurate
user estimations.

7.5. Job and queue diversity

Following the methodology presented in Section 3.3,
the diversity analysis was performed for each year and sys-
tem under two different perspectives: how different are the
jobs overall and how different are the jobs inside of each
queue. Results can be observed in Figure 13.

Hopper shows lower numbers of clusters over time, de-
creasing from 17 to 12 clusters, implying a decreasing gen-
eral diversity. In the case of Carver, it started with a fairly
simple job mix (7 clusters), had an increase of complexity
in the second year (13 clusters), to go down to the same
number of clusters (7) in the last two years. In all years
Carver presents a more homogeneous job mix in compar-
ison to Hopper.

Figure 13: Workload diversity and in queue homogeneity index:
Overall workload becoming less diverse. Job mix in queues becoming
more uniform.

According to Figure 13, Hopper’s homogeneity job ho-
mogeneity index increased 0.36 to 0.71, while its time ho-
mogeneity index increased from 0.33 to 0.46. Queues with
more jobs contain more self similar jobs in 2014 than in
2010, It is interesting to note that 2012 was higher than in
other years, implying that queues contributing more core-
hours had more self similar jobs. In the case of carver
the trend is similar, job homogeneity index increases from
0.44 (2010) to 0.81 (2014) and time homogeneity index in-
creases from 0.34 (2010) to 0.54 (2011). As we observe
all years, it can be stated that under both criteria Carver
queues job diversity was lower than in Hopper.

Overall, it can be concluded that, as both systems
aged, the jobs submitted by the users evolved to become
more uniform. Additionally, the configured policies have
evolved to build queues that classify better the jobs to
contain more self similar jobs.

8. Results summary and conclusions

In this section, we summarize our results and present
our conclusions on the workload analysis method and res-
ults characterization.

8.1. Summary of results, a year of workload

We present a reference of the current state of the work-
loads of two large scale and one mid scale high performance
systems: We summarize the key results from our detailed
analysis performed on the 2014’s workload from Edison,
Hopper, and Carver. We also compare them with pre-
existing analysis of similar, still older.

• The job wall clock times are short on all three sys-
tems. From 86% to 88% of the jobs run less than 2
hours.

14



• On Edison and Hopper, 37%, 39% of the number of
jobs run on one node and 69%, 75% run on 10 nodes
or less. On Carver, 92% of the jobs run on one node.

• On Carver, 77% of its jobs require one or less core-
hours. Carver jobs use far fewer hours than jobs on
Hopper and Edison.

• Jobs run less than 50% of their requested time: 60%
of Edison jobs, 66% of Hopper’s jobs and 95% of
Carver jobs. Jobs run over their underestimated wall
clock time: 10% Hopper’s jobs, 11% of Edison’s and
8% of Carver’s.

• Carver has the most homogeneous workload (more
similar jobs, similarity among jobs in the same queue).
Hopper has a diverse workload with a complex job
mix in its queues.

• Carver has the longest wait times, although its jobs
allocate significantly fewer core-hours than jobs on
Hopper and Edison.

• On all systems, the wait time increases as jobs al-
locate more resources. The wait time decreases with
higher priority in most cases. In some cases anom-
alies are observed; e.g. larger jobs with lower priority
experience shorter wait time.

Although these results represent the state of current
systems, it is relevant to understand their difference to ex-
iting work on workloads analysis of similar systems. In
particular, our results were compared to analyses on In-
trepid an Stampede, one current and one past HPC sys-
tems.

Intrepid was a Blue Gene/P supercomputer, with
163,840 cores, 80 TB of memory (512 MB per core), cus-
tom interconnect, peak Linpack performance of
458.6 TFLOPS, and was deployed in 2008 at the Argonne
National Laboratory. From the point of view of config-
uration, Intrepid is more similar to Carver, as both are
Teraflop systems and closer in deployment time. However,
Intrepid is a Blue Gene/P system, characterized by provid-
ing compute power through smaller but more numerous
CPU cores, an opposing approach to the analyzed NERSC
systems’ architecture, based on more powerful cores. We
compare with a trace from nine months of Intrepid in 2009
[1].

Stampede is a POWEREDGE C8220 high performance
cluster with 462,462 cores, an Infiniband interconnect, that
can deliver up to 8 PFLOPS. It was deployed at the Texas
Advanced Computing Center (Univ. of Texas) in 2012.
Stampede could be compared to Edison or Hopper in terms
of capacity, but its architecture differ from them as its pro-
cessing units are hybrid. Stampede includes both Xeon
and Phi processors in its compute nodes. For applications
using its Xeon processors, Stampede performs like Edison
or Hopper, in fact, Edison’s processor are the next genera-
tion (Ivy Bridge) to Stampede’s (Sandy Bridge). However,
the Phi processors are different. They are manycore pro-
cessors that include 61 light but power efficient CPU cores,
from a generation before current Knightslanding (KNL)

manycore Intel chips [25]. Phi processors require a regular
processor to load work on them and manage their opera-
tions. We compare with an analysis over a trace of three
months of Stampede in 2013 [26].

Looking into the workloads, Edison and Hopper’s wall
clock time distribution matches the patterns observed on
Intrepid [1]. Carver’s run time CDF is steeper and similar
to Stampede [26]. Jobs in all three systems use fewer cores
than Intrepid. Edison and Hopper jobs are similar to the
jobs on Stampede in terms of cores.

The serial queue jobs on Carver dominate the distri-
bution. Thus, Carver jobs are very different from Edison
and Hopper and other HPC systems. Edison and Hopper
share characteristics with reference systems like Intrepid
or Stampede. It is possible that current DOE Leader-
ship Computing Facilities exhibit slightly different work-
load characteristics [27]. This work is a first step to un-
derstand if results from NERSC may translate to such fa-
cilities.

8.2. Summary of results, systems lifetime evolution

Observing the evolution of large scientific infrastructu-
res through their life time allows to understand systems
evolution as their use mature. It also provides data to
support the characteristics of future workloads.

Figure 13 presents how Hopper’s workload evolved to
a more uniform job mix. However, Carver presents a spike
in the second year of its lifetime, to return to values similar
to the beginning. Hopper results capture the nature evo-
lution of systems, where the scheduler and other machine
characteristics are refined based on the workload charac-
teristics. Carver suffered two significant changes in 2011
that might have affected its diversity. First, Carver was ex-
panded in 2011 [28]. Second, the serial batch queue (long
running, low degree of parallelization) was added [29].

Figure 11 presents how the wait time steadily increases
as the systems age, this fits with a growing scientific com-
munity using the same system and more advanced applica-
tions that require faster infrastructure. Still, there is one
exception, in 2011 Carver presented significantly smaller
wait times. This could be attributed to its expansion in
2011.

As Hopper and Carver are compared in Figure 8 and
Figure 10, the analysis on the evolution of the job geome-
try reveal that Hopper jobs (which had shorter jobs but
with a higher degree of parallelism than Carver) seems
be increasing their wall clock time but using fewer CPU
cores, while Carver jobs (which had longer jobs but with
a lower degree of parallelism than Hopper) are decreasing
their wall clock time and using more CPU cores.

In general, it is interesting to observe signs that would
support the idea that as a systems ages, its workload vari-
ables evolve with a distinct trend, becoming more homo-
geneous but putting an increasing pressure on the available
resources.

15



System Vendor Model Built Nodes Cores/N Cores Memory Network TFlops/s Processor

Intrepid IBM Blue Gene/P 2008 40,960 4 163,840 80 TB Torus 557.1 Blue Gene
Stampede Dell PowerEdge 2012 6,400 16+61 462,462 192 TB Inf. FDR 8,520 Xeon, Phi

Table 7: Intrepid and Stampede characteristics

8.3. Conclusions

Analyzing NERSC’s workload offered a challenge that
required new analysis tools. For this, we establish a me-
thodology that include traditional workload analysis tech-
niques (e.g., CDF analysis of job variables) but incorpor-
ates new methods to asses job heterogeneity. The job he-
terogeneity analysis includes a novel algorithm that em-
ploy’s k -means clustering to detect the minimum number
of dominant job geometries in an HPC workload. The me-
thod also analyzes the mapping of dominant job groups
on the system prioritization schema and the resulting job
wait times. This enables to asses the effect of job hetero-
geneity on the the scheduling performance in terms of wait
time.

The results of the first application of this methodo-
logy establish a reference of the state of the workload in
2014 of three high performance systems (Edison, Hopper,
and Carver). Such systems are similar size, architecture,
and workload to many other current HPC systems. These
results can be of use to understand the behavior in other
systems, and among them we highlight: (1) The job geo-
metries were fairly diverse including significant number of
smaller jobs compared to older systems. The low per queue
homogeneity indexes, show that (2) single priority policies
are affecting jobs with a fairly diverse geometry. The wait
time analysis shows that (3) studied queues with low ho-
mogeneity indexes present poor correlation between job’s
wait time and geometry. Job’s submission patterns show
that (4) the accuracy of users’ predictions of their job’s
wall clock time (fundamental for the performance of back-
filling functions) is very low, and does not improve over
time. Finally, (5) Hopper and Carver workloads presented
a clear trend in their four year lifetime: they become less
diverse, their queues classify better their jobs, and they
become more similar. (6) Also, they experience a heavy
load that increases the overall wait times.

Our results and methodology are of use for future sche-
duling research and systems operations management. Sche-
duling research needs to address present and future work-
loads and our results set a first step to understand charac-
teristics of future systems (e.g., diverse jobs, smaller jobs,
or low accuracy in runtime estimations).

For system management, we highlight a result and an
alternative application of our methodology. First, low va-
lues on wall clock time accuracy points to further research
on how to encourage users to encourage users to provide
better predictions. Better runtime accuracy will increase
the quality of the backfilling in schedulers. Finally, the
dominant job groups produced by the job heterogeneity
analysis could be a template to define priority groups and
queues. Our results show that diverse queues offered hard

to predict wait times. Queues obtained by subdividing
dominant job groups could show predictable wait times.

9. Acknowledgments

This material is based upon work supported by the
U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research (ASCR) and the
National Energy Research Scientific Computing Center,
a DOE Office of Science User Facility supported by the
Office of Science of the U.S. Department of Energy un-
der Contract No. DE-AC02-05CH11231. Financial sup-
port has been provided in part by the Swedish Govern-
ment’s strategic effort eSSENCE, by the European Union’s
Seventh Framework Programme under grant agreement
610711 (CACTOS), the European Unions Framework Pro-
gramme Horizon 2020 under grant agreement 732667 (RE-
CAP), and the Swedish Research Council (VR) under con-
tract number C0590801 for the project Cloud Control. We
would like to thank Sophia Pasadis for editing help with
the paper.

References

[1] D. Feitelson, Parallel workloads archive 71 (86) (2007) 337–360,
http://www.cs.huji.ac.il/labs/parallel/workload.

[2] NERSC, http://www.nersc.gov, 2015-01-18.
[3] G. P. R. Alvarez, P.-O. Östberg, E. Elmroth, K. Antypas,

R. Gerber, L. Ramakrishnan, Towards understanding job hete-
rogeneity in hpc: A nersc case study, in: 2016 16th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Comput-
ing (CCGrid), IEEE, 2016, pp. 521–526.

[4] G. Rodrigo, P.-O. Östberg, E. Elmroth, K. Antypass, R. Gerber,
L. Ramakrishnan, HPC system lifetime story: Workload char-
acterization and evolutionary analyses on NERSC systems, in:
The 24th International ACM Symposium on High-Performance
Distributed Computing (HPDC), 2015.

[5] M. A. Bauer, A. Biem, S. McIntyre, N. Tamura, Y. Xie, High-
performance parallel and stream processing of x-ray microdif-
fraction data on multicores, in: Journal of Physics: Conference
Series, Vol. 341, IOP Publishing, 2012, p. 012025.

[6] S. N. Srirama, P. Jakovits, E. Vainikko, Adapting scientific com-
puting problems to clouds using mapreduce, Future Generation
Computer Systems 28 (1) (2012) 184–192.

[7] T. Hey, S. Tansley, K. M. Tolle, et al., The fourth paradigm:
data-intensive scientific discovery, Vol. 1, Microsoft research
Redmond, WA, 2009.

[8] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, Parallel job
scheduling, a status report, in: Job Scheduling Strategies for
Parallel Processing, Springer, 2005, pp. 1–16.

[9] D. A. Lifka, The ANL/IBM SP scheduling system, in: Job Sche-
duling Strategies for Parallel Processing, Springer, 1995, pp.
295–303.

[10] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters,
D. Epema, The grid workloads archive, Future Generation Com-
puter Systems 24 (7) (2008) 672–686.

[11] A. K. Mishra, J. L. Hellerstein, W. Cirne, C. R. Das, Towards
characterizing cloud backend workloads: insights from google

16

http://www.cs.huji. ac.il/labs/parallel/workload
http://www.nersc.gov


compute clusters, ACM SIGMETRICS Performance Evaluation
Review 37 (4) (2010) 34–41.

[12] K. Antypas, B. A. Austin, T. L. Butler, R. A. Gerber, NERSC
workload analysis on Hopper, Tech. rep., LBNL Report: 6804E
(October 2014).

[13] NERSC, Submitting batch jobs (carver), https:

//www.nersc.gov/users/computational-systems/carver/

running-jobs/batch-jobs/, 2015.1.15.
[14] C. Vaughan, M. Rajan, R. Barrett, D. Doerfler, K. Pedretti,

Investigating the impact of the Cielo Cray XE6 architecture on
scientific application codes, in: 2011 IEEE International Sym-
posium on Parallel and Distributed Processing Workshops and
Phd Forum (IPDPSW), IEEE, 2011, pp. 1831–1837.

[15] T. M. Declerck, I. Sakrejda, External Torque/Moab on an XC30
and Fairshare, Tech. rep., NERSC, Lawrence Berkeley National
Lab (2013).

[16] Y. Etsion, D. Tsafrir, A short survey of commercial cluster
batch schedulers, School of Computer Science and Engineering,
The Hebrew University of Jerusalem 44221 (2005) 2005–13.

[17] G. Staples, Torque resource manager, in: Proceedings of the
2006 ACM/IEEE conference on Supercomputing, ACM, 2006,
p. 8.

[18] K. Antypas, NERSC-6 workload analysis and benchmark selec-
tion process, Lawrence Berkeley National Laboratory.

[19] NERSC, Queues and polices (carver), https://www.nersc.

gov/users/computational-systems/carver/running-jobs/

queues-and-policies/, 2014.1.15.
URL https://www.nersc.gov/users/computational-systems/

carver/running-jobs/queues-and-policies/

[20] J. Weinberg, A. Snavely, Symbiotic space-sharing on sdsc’s
datastar system, in: Job Scheduling Strategies for Parallel Pro-
cessing, Springer, 2007, pp. 192–209.

[21] J. D. Hunter, Matplotlib: A 2D graphics environment, Com-
puting In Science & Engineering 9 (3) (2007) 90–95.

[22] W. W.-S. Wei, Time series analysis, Addison-Wesley publ, 1994.
[23] A. Coates, A. Y. Ng, Learning feature representations with k-

means, in: Neural networks: Tricks of the trade, Springer, 2012,
pp. 561–580.

[24] J. A. Hartigan, M. A. Wong, Algorithm as 136: A k-means
clustering algorithm, Applied statistics (1979) 100–108.

[25] A. Sodani, Knights landing (knl): 2nd generation intel R© xeon
phi processor, in: Hot Chips 27 Symposium (HCS), 2015 IEEE,
IEEE, 2015, pp. 1–24.

[26] J. Emeras, Workload traces analysis and replay in large scale
distributed systems, Ph.D. thesis, Grenoble INP (2014).

[27] S. Ahern, S. R. Alam, M. R. Fahey, R. J. Hartman-Baker, R. F.
Barrett, R. A. Kendall, D. B. Kothe, R. T. Mills, R. Sankaran,
A. N. Tharrington, et al., Scientific application requirements for
leadership computing at the exascale, Tech. rep., Oak Ridge Na-
tional Laboratory (ORNL); Center for Computational Sciences
(2007).

[28] NERSC, Magellan batch queues on carver, http://www.

nersc.gov/REST/announcements/message_text.php?id=1991,
2015.01.15.
URL http://www.nersc.gov/REST/announcements/message_

text.php?id=1991

[29] NERSC, Serial queue on carver/magellan, http://www.

nersc.gov/REST/announcements/message_text.php?id=2007,
2015.01.15.
URL http://www.nersc.gov/REST/announcements/message_

text.php?id=2007

17

https://www.nersc.gov/users/computational-systems/carver/running-jobs/batch-jobs/
https://www.nersc.gov/users/computational-systems/carver/running-jobs/batch-jobs/
https://www.nersc.gov/users/computational-systems/carver/running-jobs/batch-jobs/
https://www.nersc.gov/users/computational-systems/carver/running-jobs/queues-and-policies/
https://www.nersc.gov/users/computational-systems/carver/running-jobs/queues-and-policies/
https://www.nersc.gov/users/computational-systems/carver/running-jobs/queues-and-policies/
https://www.nersc.gov/users/computational-systems/carver/running-jobs/queues-and-policies/
https://www.nersc.gov/users/computational-systems/carver/running-jobs/queues-and-policies/
https://www.nersc.gov/users/computational-systems/carver/running-jobs/queues-and-policies/
http://www.nersc.gov/REST/announcements/message_text.php?id=1991
http://www.nersc.gov/REST/announcements/message_text.php?id=1991
http://www.nersc.gov/REST/announcements/message_text.php?id=1991
http://www.nersc.gov/REST/announcements/message_text.php?id=1991
http://www.nersc.gov/REST/announcements/message_text.php?id=1991
http://www.nersc.gov/REST/announcements/message_text.php?id=2007
http://www.nersc.gov/REST/announcements/message_text.php?id=2007
http://www.nersc.gov/REST/announcements/message_text.php?id=2007
http://www.nersc.gov/REST/announcements/message_text.php?id=2007
http://www.nersc.gov/REST/announcements/message_text.php?id=2007

	Introduction
	Background
	Challenges in HPC scheduling
	Scheduling
	Related work on workload analysis

	Methodology
	System descriptions
	System characteristics
	Workload
	Scheduler characteristics
	Queues configuration

	Data Source
	Analysis Framework
	Trend analysis

	Job Characterization
	Job geometry
	Job's characteristics
	Job diversity

	Queue Characterization
	Queue significance
	Queue Diversity

	Performance Characterization
	Utilization
	Job wait time

	Trend Analysis
	Time Patterns and analysis granularity
	Job geometry
	Job wait time
	Wall clock time accuracy
	Job and queue diversity

	Results summary and conclusions
	Summary of results, a year of workload
	Summary of results, systems lifetime evolution
	Conclusions

	Acknowledgments

