
HPC Scheduling in
a Brave New World

Gonzalo P. Rodrigo Álvarez

G
onzalo P. Rodrigo Á

lvarez
 H

P
C

 S
ch

ed
u

lin
g

 in
 a B

rave N
ew

 W
orld

20
17

Department of Computing Science
Umeå University, SE-901 87 Umeå
www.cs.umu.se/english

Batch scheduling is like playing Tetris with jobs instead of pieces...
…only, you cannot rotate the pieces.

ru
nt

im
e

resources

UMEÅ UNIVERSITY

ISBN 978-91-7601-693-0
ISSN 0348-0542
UMINF 17.05

HPC Scheduling
in a Brave New World

Gonzalo P. Rodrigo

´

Alvarez

PhD Thesis, March 2017

Department of Computing Science

Ume

˚

a University

Sweden

Department of Computing Science
Ume̊a University
SE-901 87 Ume̊a, Sweden

gonzalo@cs.umu.se

Copyright c� 2017 by the authors
Except Paper II, c� Springer-Verlag, 2013

ISBN 978-91-7601-693-0
ISSN 0348-0542
UMINF 17.05

Printed by Print & Media, Ume̊a University, 2017

Abstract
Many breakthroughs in scientific and industrial research are supported by si-
mulations and calculations performed on high performance computing (HPC)
systems. These systems typically consist of uniform, largely parallel compute
resources and high bandwidth concurrent file systems interconnected by low
latency synchronous networks. HPC systems are managed by batch schedu-
lers that order the execution of application jobs to maximize utilization while
steering turnaround time.

In the past, demands for greater capacity were met by building more power-
ful systems with more compute nodes, greater transistor densities, and higher
processor operating frequencies. Unfortunately, the scope for further increases
in processor frequency is restricted by the limitations of semiconductor techno-
logy. Instead, parallelism within processors and in numbers of compute nodes
is increasing, while the capacity of single processing units remains unchanged.
In addition, HPC systems’ memory and I/O hierarchies are becoming deeper
and more complex to keep up with the systems’ processing power. HPC appli-
cations are also changing: the need to analyze large data sets and simulation
results is increasing the importance of data processing and data-intensive appli-
cations. Moreover, composition of applications through workflows within HPC
centers is becoming increasingly important.

This thesis addresses the HPC scheduling challenges created by such new
systems and applications. It begins with a detailed analysis of the evolution of
the workloads of three reference HPC systems at the National Energy Research
Supercomputing Center (NERSC), with a focus on job heterogeneity and sche-
duler performance. This is followed by an analysis and improvement of a fair-
share prioritization mechanism for HPC schedulers. The thesis then surveys the
current state of the art and expected near-future developments in HPC hard-
ware and applications, and identifies unaddressed scheduling challenges that
they will introduce. These challenges include application diversity and issues
with workflow scheduling or the scheduling of I/O resources to support appli-
cations. Next, a cloud-inspired HPC scheduling model is presented that can
accommodate application diversity, takes advantage of malleable applications,
and enables short wait times for applications. Finally, to support ongoing sche-
duling research, an open source scheduling simulation framework is proposed
that allows new scheduling algorithms to be implemented and evaluated in a
production scheduler using workloads modeled on those of a real system. The
thesis concludes with the presentation of a workflow scheduling algorithm to
minimize workflows’ turnaround time without over-allocating resources.

iii

Sammanfattning p̊a svenska
Många genombrott i vetenskaplig och industriell forskning stöds av simuleringar
och beräkningar p̊a högpresterande datorsystem, s̊a kallade HPC-system. Tra-
ditionellt best̊ar dessa av en stor mängd parallella och homogena datorresurser
som är sammankopplade med ett synkront nätverk med hög bandbredd och l̊ag
latens. Resurserna i HPC-systemet hanteras av en schemaläggare som planerar
var och när olika applikationer ska exekveras för att minimera användarnas
väntetider och maximera resursnyttjandet.

Till för n̊agra år sedan skedde den normala utvecklingen av alltmer kraft-
fulla HPC-system genom att man ökade antalet noder i det parallella systemet
samt ökade transistordensiteten och klockfrekvensen i processorerna. P̊a senare
tid kan man p̊a grund av halvledartekniska begränsningar inte längre dra fördel
av ökade klockfrekvenser. Istället ökas kapaciteten genom ökad parallellitet i
processorer och i form av ökat antal datornoder. En annan del av utvecklin-
gen är att HPC-systemens minnes- och I/O-hierarkier blir allt djupare och mer
komplexa för att h̊alla jämna steg med utvecklingen av processorkraft. De ap-
plikationer som körs p̊a HPC-systemen förändras ocks̊a: behovet att analysera
stora datamängder och simuleringsresultat ökar betydelsen av datahantering
och dataintensiva applikationer. Därtill har behovet av tillämpningar i form av
l̊anga arbetsflöden istället för enskilda jobb ocks̊a ökat.

Denna avhandling studerar hur denna utveckling skapar nya utmaningar
för framtidens HPC-systems schemaläggningssystem. Studien inleds med en
detaljerad analys av utvecklingen av tre referenssystem vid National Energy
Research Supercomputing Center (NERSC) vid Lawrence Berkeley Lab, med
fokus p̊a jobbens heterogenitet och schemaläggarnas prestanda. Detta följs av
en analys och förbättring av en prioriteringsmekanism (s̊a kallad fairshare) för
schemaläggare. Därefter presenteras en studie av nuläge och förväntad framtida
utveckling vad gäller HPC-h̊ardvara och -applikationer. Studien presenterar ett
antal viktiga utmaningar för framtida schemaläggare, som t.ex. applikation-
ernas ökade heterogeneitet, behovet av att e↵ektivt schemalägga arbetsflöden
samt schedulering av I/O-resurser. Därefter presenteras en modell för sche-
maläggning för HPC-system som utvecklats med inspiration fr̊an schemaläggn-
ing för datormoln. Avhandlingen presenterar ocks̊a en simulator, tillgänglig
som öppen källkod, för forskning kring schemaläggning. Simulatorn gör det
möjligt att studera nya algoritmer för schemaläggning i ett system av produk-
tionskaraktär. Vi avslutar med att presentera en algoritm för schemaläggn-
ing av arbetsflöden med målsättning att minimera användarnas väntetid och
minimera resursutnyttjandet.

v

Preface

This thesis contains an introduction that summarizes key concepts that the
author considers useful to understand before reading research articles about
HPC scheduling, including the definition of and need for high performance
computing, basic batch scheduling, and the characteristics of present and future
HPC systems together with the associated scheduling challenges. The thesis
includes the following papers:

Paper I Gonzalo P. Rodrigo, Per-Olov Östberg, Erik Elmroth, Katie Anty-
pas, Richard Gerber, and Lavanya Ramakrishnan. Towards Un-
derstanding HPC Users and Systems: A NERSC Case Study. Sub-
mitted, 2017. This paper is an extended, joint version of papers
IX and X.

Paper II Gonzalo P. Rodrigo, Per-Olov Östberg, and Erik Elmroth. Priority
Operators for Fairshare Scheduling. In Proceedings of the 18th
Workshop on Job Scheduling Strategies for Parallel Processing, pp.
70-89, Springer International Publishing, 2014.

Paper III Gonzalo P. Rodrigo, Per-Olov Östberg, Erik Elmroth, and Lavanya
Ramakrishnan. A2L2: An Application Aware Flexible HPC Sche-
duling Model for Low-Latency Allocation. In Proceedings of the
8th International Workshop on Virtualization Technologies in Dis-
tributed Computing (VTDC’15), pp. 11-19, ACM, 2015.

Paper IV Gonzalo P. Rodrigo, Erik Elmroth, Per-Olov Östberg, and Lavanya
Ramakrishnan. ScSF: A Scheduling Simulation Framework. In
Proceedings of the 21th Workshop on Job Scheduling Strategies for
Parallel Processing, Accepted, Springer International Publishing,
2017.

Paper V Gonzalo P. Rodrigo, Erik Elmroth, Per-Olov Östberg, and Lavanya
Ramakrishnan. Enabling workflow aware scheduling on HPC sys-
tems. Submitted, 2017.

vii

In addition, the following publications were produced during the author’s
PhD studies but are not included in the thesis:

Paper VI Gonzalo P. Rodrigo. Proof of compliance for the relative operator
on the proportional distribution of unused share in an ordering fair-
share system. Technical report UMINF-14.14, Ume̊a University,
2014

Paper VII Gonzalo P. Rodrigo. Establishing the equivalence between oper-
ators: theorem to establish a su�cient condition for two operators
to produce the same ordering in a Fairshare prioritization system.
Technical report UMINF-14.15, Ume̊a University, 2014

Paper VIII Gonzalo P. Rodrigo. Theoretical analysis of a workflow aware
scheduling algorithm. Technical report UMINF-17.06, Ume̊a Uni-
versity, 2017

Paper IX Gonzalo P. Rodrigo, Per-Olov Östberg, Erik Elmroth, Katie Anty-
pas, Richard Gerber, and Lavanya Ramakrishnan. HPC System
Lifetime Story: Workload Characterization and Evolutionary Ana-
lyses on NERSC Systems. In Proceedings of the 24th Interna-
tional ACM Symposium on High-Performance Distributed Com-
puting (HPDC’15), ACM 2015

Paper X Gonzalo P. Rodrigo, Per-Olov Östberg, Erik Elmroth, Katie Anty-
pas, Richard Gerber, and Lavanya Ramakrishnan. Towards Un-
derstanding Job Heterogeneity in HPC: A NERSC Case Study.
In Proceedings of the 16th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid’16), IEEE/ACM
2016

This material is based upon work supported in part by the U.S. Department
of Energy, O�ce of Science, O�ce of Advanced Scientific Computing Research
(ASCR) and the National Energy Research Scientific Computing Center, a
DOE O�ce of Science User Facility supported by the O�ce of Science of the
U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Finan-
cial support has been provided in part by the Swedish Government’s strategic
e↵ort eSSENCE, by the European Union’s Seventh Framework Programme
under grant agreement 610711 (CACTOS), the European Union’s Framework
Programme Horizon 2020 under grant agreement 732667 (RECAP), and the
Swedish Research Council (VR) under contract number C0590801 for the pro-
ject Cloud Control.

viii

Acknowledgements
”Four years or work,

four years of hardship,

four years on a road towards enlightenment and joy.

The road was sometimes steep,

the road was sometimes deep,

but the road was never lonely, as many people always helped me.

In my falls, with patience, they consoled me,

in my struggles, with energy, they pushed me,

harsh and gently they brought me, to the place I wanted to be...”

1

First, I would like to thank Lavanya Ramakrishnan, my advisor at the
Berkeley Lab. We met in one of the most challenging moments of my PhD and,
under her supervision and the Californian sun, we managed to steer my work
towards the thesis that now sits in your hands (or on your screen). Always
patient and insightful, she was (and is) a great advisor, colleague, and friend.

Second, but in no way smaller, comes my gratitude to Erik Elmroth, my
advisor at Ume̊a University and suspected shareholder of Lottas Krog. Apart
from patiently understanding my unconventional PhD program, his scientific,
and personal support were fundamental in these years. He is probably the
busiest person I have ever met, still, he always had time for matters that were
important.

I also would like to thank P-O Östberg, co-advisor at Ume̊a University,
who helped me settle down in Ume̊a, start a new life, and improve my skiing
technique (the hard way).

To the pecan cheesecake club members: Mina, patient ex-o�ce mate, con-
fessor, and victim of my devil’s advocacy; Jakub, ex-house mate, PhD brother,
and comrade on the same battles; and Cristian, source of wisdom, cardio
partner-in-crime, and psyco-canoeing victim. Thanks for all those great con-
versations about science, life, “moment soaking”, and everything else.

I would like to express my gratitude to the rest of the distributed systems
group at Ume̊a University: Abel (the HPC torch is yours now), Ahmed (we
didn’t have enough co↵ees together), Amardeep (first room-mate), Chanh
(so brief!), Daniel (fairshare advisor), Ewnetu (smartest coworker), Fran-
cisco (unexpected good advise), Johan (always on target), Lars (stu↵ you
should know), Luis (a man with a red hat), Muyi (anomalies for all), Peter

1My apologies for this poetic crime.

ix

(the stu↵ that he knows), Petter (I finally got a flat!), Selome (always power-
aware), Simon (the Openstack master!), and Viali (unexpected owner of a
Quebec driving license). And also to other people at the department who have
been great company these years.

I should thank the members of the Data Science and Technology department
(and surroundings) at the Berkeley Lab who were great co-workers, friends,
donut dealers, Friday pizza-goers, and running mates during these years: Ab-
delrahman Elbashandy, Dan Gunter, Deb Agarwal, Devarshi Gos-
hal, Eugen Feller, Gilberto Pastorello, Gunther Weber, Hamdy El-
gammal, Katie Antypas, Megha Sandesh, Richard Gerber, Paolo
Calafiura, Sarah Poon, Shreyas Cholia, Sophia Passadis, Val Hendrix,
Wenqin Chen, and You-Wei Cheah.

During these years, I worked in two projects that were not strictly thesis
related and I would like to thank: Stephen Bailey, for teaching me the true
value of open-source work and showing me a di↵erent side of the Berkeley Lab;
and John Wilkes for making me a better engineer through the fear (and joy)
of Google’s code-review system and the Oxford comma.

For being patient, responsive, and for helping me to harness the compute
power that made this work possible, I have to specially thank the systems’
gurus Tomas Forsman (UmU) and Keith Beattie (LBNL).

To my parents, Gonzalo and Nieves, whose support in the last 37 years
gave a personal, deeper meaning to the quote “If I have seen further, it is by
standing on the shoulders of giants”. And, finally, to Katherine, who made
these last three years worth it.

¡Gracias a todos!

x

Contents

1 Introduction 1

2 High performance computing 5
2.1 High performance applications 5
2.2 HPC systems . 7
2.3 HPC scheduling . 10

2.3.1 Job submission and priority 11
2.3.2 Job scheduling . 11
2.3.3 Placement, accounting, and other functions 12

3 New scheduling challenges 13
3.1 Present and future workloads 13
3.2 Future systems . 16

3.2.1 Dennard scaling break and processor parallelism 16
3.2.2 The memory gap . 17
3.2.3 I/O gap . 18
3.2.4 Hardware heterogeneity 18

3.3 Scheduling research . 19

4 Contributions 21
4.1 Paper I: Characteristics and trends in HPC workloads 21
4.2 Paper II: Prioritization in batch schedulers, Fairshare 22
4.3 Paper III: A survey of current scheduling challenges and a posi-

tion model to ease them . 23
4.4 Paper IV: Building tools for scheduling research 23
4.5 Paper V: Workload-aware scheduling in HPC systems 24

Paper I 33

Paper II 53

Paper III 75

Paper IV 87

Paper V 109

xi

Chapter 1

Introduction

High performance computing (HPC) systems are designed to support the con-
current execution of performance-critical and large-scale applications at the
minimum possible cost in terms of initial investment, operating costs, and
energy consumption [20]. Research in scientific fields such as high-energy phy-
sics, geophysics, climate study, and bioinformatics relies on HPC systems to
perform complex large-scale experiments [9]. HPC systems are managed by
HPC batch schedulers, which arrange the concurrent execution of applications
(jobs) to maximize utilization while o↵ering reasonable turnaround times.

Classical HPC systems were uniform, largely parallel, and built around
low latency synchronous interconnects [11]. To meet the increasing demands of
computation-based science, compute capacity was increased by using processors
with higher operating frequencies. However, current semiconductor technolo-
gies do not support further frequency increases, so new design strategies are
required [26]. Currently, the parallelism within compute nodes is increasing
but individual processing units are not becoming more powerful. Also, sys-
tems are becoming more heterogeneous and incorporating specialized resources
tailored to the execution of specific application types [11]. Despite this growing
raw processing capacity, current I/O and memory technologies cannot deliver
matching performance improvements, creating a widening capability gap. As a
consequence, HPC systems’ memory and I/O hierarchies are becoming deeper
and more complex.

Changes in hardware and architecture present new challenges when mak-
ing scheduling decisions. For instance, the heterogeneity of modern systems’
resources increases the complexity of placement and scheduling decisions: the
scheduler must infer a resource allocation that will run an application e�ciently
while avoiding resource fragmentation that would reduce utilization. In addi-
tion, new I/O and memory systems include resources that are managed by the
scheduler, such as burst bu↵ers - high bandwidth, low access-time solid-state
drives that act as caches to boost file system performance [36]. Their allocation
is requested by users but the scheduler controls their assignment and coordin-

1

ates their use with that of the compute resources, increasing the dimensionality
of the scheduling problem.

HPC applications are also changing. Classical HPC workloads were domin-
ated by large, parallel, and tightly coupled jobs. However, data processing and
high throughput applications, whose performance models di↵er from those of
tightly coupled jobs, are more prevalent in scientific workloads [21]. Also, some
applications are based on the composition of sub-applications (tasks) with dif-
ferent performance and resource requirements. These applications are usually
structured as workflows whose composition derives from the control or data
dependencies of their tasks. HPC schedulers support the execution of these
increasingly common applications, but their scheduling decisions are typically
not optimized for such uses. For example, workflows may su↵er from long turn-
around times because most schedulers cannot recognize their structure, leading
to long intermediate wait times for their tasks.

This thesis proposes models and solutions for current and future scheduling
challenges. The first step in solving any scheduling challenge is to under-
stand and characterize current systems and their workloads to identify trends
in their evolution. To this end, the first stage of the work presented in this
thesis involved analyzing the workloads of three HPC systems at the National
Energy Research Supercomputer Center (NERSC) using a novel workload ana-
lysis method that incorporates a characterization of job diversity. Many dif-
ferentiated groups of jobs were detected in the workloads, indicating that their
job geometry (in terms of requested resources and runtime) was very hetero-
geneous. Job heterogeneity also a↵ected the predictability of job wait times.
Under ideal conditions, a larger job (i.e. one requiring a greater allocation
of resources) of a given priority (i.e. importance) would be expected to wait
for longer than a smaller job of the same priority. Also, for a given resource
allocation, a job with a higher priority should wait less than one with lower
priority. The job geometry heterogeneity within priority groups in the studied
workloads produced wait times that did not match this expected behavior.

Next, the mechanisms used by current HPC schedulers were analyzed. Spe-
cifically, a deep analysis of the fairshare prioritization model, common in HPC
systems, was performed. Priority systems steer the wait time of jobs according
to administrative policies, and this mechanism allows priority models to be
expressed as organization hierarchy trees. This analysis showed how individual
system rules enforce overall system behavior and add new mechanisms that
improve its behavior.

The next step involved surveying new systems and applications, and identi-
fying the scheduling challenges they present. This survey was complemented
by an analysis of existing cloud scheduling solutions that address similar pro-
blems. Based on these investigations, a two-level cloud-based application-aware
scheduling model was proposed. This model uses one scheduler per application
type, and thus avoids the problem of comparing applications whose perfor-
mance metrics have di↵erent semantics (for example, wait times have di↵erent
impacts on regular jobs and workflow jobs). It also includes mechanisms to

2

enable dynamic scaling of malleable applications, whose resource usage can be
changed during runtime to increase utilization. In addition, it supports real
time jobs (jobs that require short wait times) by enabling the schedulers to
borrow resources for their execution.

Unfortunately, a lack of suitable scheduling research tools made it di�cult
to implement or evaluate this model. A new open source Scheduling Simulation
Framework, ScSF, was therefore developed. Built around a real instance of the
Slurm scheduler (the most popular scheduler among the systems on the Top500
list), the framework includes modules for modeling systems, generating work-
loads based on the models, running simulations, and analyzing their results.
It also includes orchestration tools to automate the concurrent execution of
experiments over distributed resources. This tool was very useful in the work
presented herein, and will be useful in any future HPC scheduling research
involving simulation.

To conclude, this thesis describes WoAS, a Workflow Aware Scheduling
technique for e�cient workflow scheduling. Workflows in HPC systems are
often run as chained jobs or pilot jobs. Chained jobs are groups of jobs in-
terconnected by dependencies such that no job can start until all those that
precede it in the workflow are complete. Pilot jobs allocate the workflow the
maximum resources it will need at any point in its entire runtime, leaving re-
sources idle at some stages. WoAS instead proposes submitting workflows as
pilot jobs that include manifests describing the workflow’s structure. It also
modifies the way in which the scheduler’s waiting queue exposes jobs to the
the rest of the scheduler, keeping them as pilot jobs, when handled by the pri-
oritization engine, and transforming them in chained jobs, when handled by
scheduling algorithms (first come first serve and backfilling). WoAS was imple-
mented as an open-source project in Slurm and evaluated in ScSF. Experiments
showed that with WoAS workflow turnaround times are significantly shorter
than under the chained jobs approach, giving speedups of up to 3.75x with
no over-allocation of resources or significant e↵ects on the turnaround time of
non-workflow jobs.

The rest of the thesis is structured as follows. Chapter 1 provides an over-
view of High Performance Computing as well as HPC systems and schedulers.
Current and new scheduling challenges are described in Chapter 3. The con-
tributions of this thesis are summarized in Chapter 4. Finally, the five papers
that describe the thesis work in full detail are presented.

3

Chapter 2

High performance
computing

This chapter introduces basic concepts in High Performance Computing (HPC):
its purpose, applications, systems, and scheduling. On the basis of previous
work [20] and the author’s own observations, HPC can be defined as follows: A
computing system should be considered high performance if it supports the exe-
cution of large-scale, performance-oriented applications, at the smallest possible
cost, with the shortest possible runtime, within some time constraint. Each part
of the definition imposes certain requirements, constraints, and characteristics
on HPC systems and their schedulers. These are discussed in the following
sections.

2.1 High performance applications

High performance computing supports the execution of applications used in
fields such as science, engineering [13], and finance [12]. Although all these
fields employ similar systems and computing models, this thesis focuses on
scientific applications because of the author’s knowledge base and research
interests. However, the results presented herein should be equally applicable
to HPC for engineering and finance.

Put simply, scientific applications are applications that support the scientific
process by enabling researchers to perform simulations, analyze data, or apply
numerical methods to solve large computational problems. These applications
are executed on HPC systems as batch jobs and have diverse characteristics
[53]. The remainder of this sections describes the application characteristics
with the greatest impact on the design and operation of HPC systems.
Large tightly-coupled parallel applications: Some scientific applications
run many parallel processes with synchronized execution steps. Their com-
plexity is illustrated by a classical tightly-coupled application: atmospheric

5

Figure 2.1: Spacial mapping of the atmosphere onto computing threads in an
atmospheric simulation.

simulation [41]. Figure 2.1 depicts a computational approach used to predict
the weather in Scandinavia. First, the space over Scandinavia is divided into
a three dimensional grid and each cell is assigned to a single CPU core in an
HPC system. Each core executes a loop to iteratively simulate the atmosphere
in the corresponding cell during one time step. After the simulation of each
time step, the results for the cell are propagated to the neighboring cells (and
thus the corresponding cores) and used as inputs for the next iterative loop.
Because each loop iteration depends on the previous iteration results from
multiple cells, the communication step between cells becomes the application’s
repeating synchronization point. Under this execution model, a higher com-
munication latency between processes implies a longer runtime per simulation
step, a longer overall runtime, and thus worse performance and e�ciency of re-
source use. Moreover, if any of the parallel processes run more slowly than the
others, the need for synchronization delays the execution of the all processes.

Some specific hardware and software requirements must be met to achieve
good performance under a synchronization model of this kind [7]. First, the
compute hardware must be homogeneous to ensure that the execution time for
a given piece of code is identical in all the system’s CPU cores. Also, the
system must employ a low-jitter and low-latency interconnect to minimize the
latency and variability of the communication phase. Moreover, the system’s
resources must be large enough to run the applications. For example, the re-
solution of the weather simulation discussed above depends on the number of
concurrent processes: a system with more CPU cores permits the execution
of more concurrent processes, making it possible to perform simulations that
use greater numbers of smaller cubes and thus yield more precise weather pre-
dictions. Finally, a simple low latency communications framework or message
passing interface (MPI [49]), is required to ease the development and deploy-
ment of applications that require communication and synchronization between
processes.

6

Data processing and high-throughput applications: High performance
computing also supports scientific applications for analyzing large data sets
produced by real life experiments or simulations [40]. Such applications do
not adhere to the tightly-coupled model: while they may be parallel, their
execution threads are not tightly synchronized, and their resource allocation
may be malleable, i.e. they can tolerate dynamic resource allocation during
runtime. However, such applications are typically I/O and memory bound,
and require low latency and high bandwidth memory and I/O to achieve good
performance. This requirement is amplified by the concurrent execution of
applications on HPC systems: I/O requirements aggregate, multiplying the
peak I/O bandwidth the system must provide.

To satisfy these memory performance requirements, the compute nodes of
high performance systems have fast memory and large caches. The I/O re-
quirements are satisfied by using large parallel file systems (PFS) that serve
multiple concurrent I/O operations and divide objects’ data across disks in a
process known as striping [34] to achieve high bandwidth.
Workflows: Some scientific processes rely on applications that perform dif-
ferent computational operations in sequence. For example, a tightly-coupled
simulation using a subatomic particle model may generate a dataset that is then
analyzed using a data processing application to evaluate the simulation’s accur-
acy. In such cases, the applications have multiple stages that execute di↵erent
tasks with di↵erent execution models and resource allocations (e.g. di↵erent
sizes, durations, or specific hardware requirements). These applications are
often composed as workflows that map the stages onto di↵erent batch jobs,
which then receive stage-specific resource allocations [51]. However, workflows
require the system scheduler to at least support the expression of dependencies
between jobs, i.e. statements indicating that one job cannot start until an-
other has finished correctly. Users commonly employ workflow managers that
automate the submission of workflow jobs and supervise their execution.

2.2 HPC systems

HPC systems are necessarily shaped by applications’ requirements and
performance-e�ciency trade o↵s. This section describes the characteristics of
such systems with reference to Edison, a Cray XC30 supercomputer at NERSC
that produces 2.5 Pflops/s of raw computational power [4]. Edison was deployed
in 2014, when it was ranked at #18 in the Top500 list. As of April 2017, Edison
is still operational and is ranked at #60 in the Top500.
Performance and e�ciency: Distributed systems running scientific and in-
dustrial applications are created to support di↵erent economic models. For
example, the compute infrastructure of an online company must always deliver
the performance required to process any level of its variable bursty workload.
Cost reduction and control of underutilization are addressed (e.g. through over-
booking, elasticity, and idle capacity lending) but are considered secondary pro-

7

blems [37]. However, in high performance computing, workload levels always
exceed the system’s capacity and a backlog of waiting work is always present
[20]. Also, applications require specialized hardware, which make HPC systems
significantly more expensive than other large computing systems. Therefore,
producing the maximum amount of work per cost unit is a high priority. The
following subsections discuss some key characteristics of HPC systems that
a↵ect their e�ciency in terms of the costs of system deployment, operating
costs, and power consumption.
Uniformity and a high degree of parallelism: Applications for studying
large scientific problems benefit from large or extreme parallelism. In some
cases, the precision of their results depends on the availability of resources, as
in the case of the weather simulation discussed above or when solving linear
systems. In addition, tightly-coupled applications require parallelized hardware
to achieve uniform performance and avoid straggler threads that slow down
execution.

The Edison system consists of 5586 identical compute nodes, each having
two processors (with 12 CPU cores each) and 64 GB of RAM, giving 134064
CPU cores and 357 TB of RAM in total. The system can run parallel appli-
cations with up to 134064 threads, or 268128 threads if hyper-threading is
enabled. Such a system allows large applications to be executed without ad-
versely a↵ecting overall system performance. For instance, during the work
on Paper I we observed applications allocating tens of thousands of threads in
Edison without noticeably a↵ecting the performance of other applications or
their wait times.
A low-latency, low-jitter, high-bandwidth, uniform interconnect: The
need to support large, parallel, tightly-coupled applications imposes unique re-
quirements on the interconnect of a HPC system: it must provide synchronous,
low latency, high-bandwidth communications between processes running across
the whole system. These requirements a↵ect the hardware and topology of the
network. For instance, the degree of connectivity is higher and the maximum
number of hops is smaller than in conventional networks. This ensures that
latency does not vary significantly across the system, simplifying the sche-
duler’s placement decisions. Also, network cards and drivers must support
synchronized inter-process communication across nodes. This allows the pro-
cesses of tightly-coupled parallel applications to reduce their execution time by
controlling the precise instant at which a message is sent through the network.

In the case of Edison, its interconnect has a Dragonfly topology [33] that
guarantees uniform low latency between all processes in all system nodes. This
model’s degree of connectivity is superior to that of the Fat-tree interconnects
[35] used in older systems, which do not provide uniform internode latency
and thus cause tightly-coupled applications to run more slowly unless all their
assigned nodes are leaves of the same network switch.
Power-e�cient computation: HPC systems are large systems (e.g. Edison
has 134064 cores) that are used at almost their full capacity without interrup-
tion throughout their lifetime. Since their power budget is large (e.g. 3748 kW

8

for Edison), power e�ciency is a critical requirement that must be considered
during both hardware design and system operation. For example, systems are
built with the most recent, power-e�cient semiconductor and system techno-
logies available at design time. Moreover, systems are retired when a newer
system becomes available that consumes significantly less power while o↵ering
equivalent or superior compute capabilities.

For example, the Hopper supercomputer at NERSC produced 1.28 Peta-
flops/sec and o↵ered 212 terabytes of RAM while consuming 2910 kW of power
(2227 kW/Petaflops) [5]. It was retired after only four years of operation and
replaced by Edison, a more modern and power-e�cient system. Edison pro-
duces 2.59 Petaflops/sec and o↵ers 356 terabytes of RAM while consuming
3747kW of power (1,446 kW/Petaflops) [4].
High-bandwidth, concurrent I/O: High performance systems support con-
current execution of many applications with high individual I/O requirements.
This necessitates the use of large parallel file systems (PFSs) that divide files
into stripes that are spread across multiple disks. The combined performance
of multiple disks when reading or writing a file provides the high bandwidth
needed in HPC systems. The distribution of files across a large pool of disks
also provides the capacity to serve di↵erent applications concurrently while
satisfying each application’s performance requirements.

Edison is served by four di↵erent file systems with a total storage capacity
of 7.56 petabytes [2]. Each file system has di↵erent performance characteristics
that reflect its intended use. For example, the home folder system is the slowest,
serving a maximum bandwidth of 100 MB/s. On the other hand, the global
scratch Lustre PFS can serve over 700 GB/s of combined bandwidth.
Software support: HPC systems’ software stacks o↵er common interfaces
and functionalities to sustain widely-used operations in scientific applications.
Such software often takes the shape of software libraries or execution frame-
works. Many parallel tightly-coupled applications use message passing libraries
to coordinate their processes. Consequently, systems include implementations
of MPI (e.g. open-MPI [6] or MVAPICH2 [3]) that are adapted to the pecu-
liarities of their interconnects and hardware. Similarly, execution frameworks
facilitate application development by abstracting the underlying system, mak-
ing it possible to create applications that should need only minor modifications
to run on any system that supports the execution framework in question. For
example, users in NERSC are increasingly migrating their Spark [55] and R [52]
applications from their private clusters to Edison because both frameworks are
supported at NERSC [1],

However, deploying new applications in an HPC system is not trivial, even
if the required libraries are supported. Particularities in hardware and di↵er-
ences in implementation alter the behavior of libraries across systems, a↵ecting
the results of overlaying applications. To facilitate portability, NERSC sys-
tems support Shifter [30], a container technology [38] for HPC systems. Using
Shifter, HPC applications are deployed together with specific versions of the
required libraries that override those already present in the system.

9

Figure 2.2: Job ordering for maximum
utilization

Figure 2.3: Job ordering to avoid long
individual turnaround times.

2.3 HPC scheduling

Applications in HPC systems are run as batch jobs, i.e. time-limited requests
for resources to run the application binaries. To run multiple applications
concurrently, HPC schedulers order the execution of batch jobs to achieve high
utilization while controlling their turnaround times. However, as demonstrated
by the following examples, these two objectives may oppose each other. Figu-
res 2.2 and 2.3 present two di↵erent orderings for scheduling the same group
of jobs. The job ordering in Figure 2.2 maximizes utilization and, over the
measured window (indicated by the red lines), it minimizes the presence of idle
resources. However, we observe that job J3 is delayed significantly more than
the others. In contrast, Figure 2.3 depicts an ordering that limits the maximum
per job wait time to control turnaround times. The resulting ordering equal-
izes the jobs’ turnaround times more e↵ectively (no job waits as long as J3 in
the previous example), but yields more idle resources during the observation
window. In HPC schedulers, the balance between utilization and turnaround
time is controlled by the scheduler prioritization system and the scheduling
algorithms, which are discussed in sections 2.3.1 and 2.3.2

Production HPC systems use di↵erent workload managers that combine
scheduling and resource management. Some of the most popular are Slurm [54],
LSF [15], Loadlever [31], and the combination of Moab (scheduler) with Torque
(resource manager) [16]. While these tools are similar in characteristics and
implementation, the work presented in this thesis was performed using Slurm
because of its open-source nature and its dominant presence in the Top500
systems list.

The following subsections describe the components and mechanisms present
in a generic HPC scheduler. Understanding of these descriptions may be facil-
itated by looking at Figure 2.4, which depicts the steps in the life of a batch
job and the relationship between the scheduler’s components.

10

Figure 2.4: Components of a generic batch scheduler.

2.3.1 Job submission and priority

The life-cycle of a batch job starts with its submission to the system. The
batch job submission must provide a detailed specification of the requested re-
sources (e.g. the number of cores, minimum RAM per core, or specific compute
nodes to run on), an estimate of the job’s runtime, a priority request (express-
ing the job’s importance), and, if applicable, a list of dependencies on other
jobs (e.g. statements that the job should not start until some set of conditions
is met).

If no other jobs are waiting and there are enough resources available, the
scheduler runs the job immediately. Otherwise, it is appended to a job waiting
queue, and will be executed when it reaches the queue’s top area. The jobs in
the waiting queue are initially ordered by arrival time. However, to steer the
jobs’ turnaround time, jobs are ranked and re-ordered by a priority engine.
Di↵erent ranking policies define priorities based on job size (e.g. smaller jobs
should run sooner), priority class (e.g. jobs in the real time class should run
before any other job), fairness (i.e. priorities dictated by system quotas), or
other administrator-defined criteria. This prioritization makes it possible to
steer the turnaround time of jobs by assigning higher priorities to those that
should have shorter turnaround times.

2.3.2 Job scheduling

Jobs progress towards the top area of the waiting queue until they are extracted
by the scheduling algorithms and then executed. Most HPC batch schedu-
lers include the FCFS (First Come First Served) and backfilling scheduling
algorithms [50]. Under FCFS, the first jobs of the queue are run in order until
there are no longer enough unallocated resources for the next job in the queue.
This algorithm preserves the queue’s initial order, guaranteeing a certain level
of wait time equality among jobs. However, by itself FCFS produces low util-
ization values. Figure 2.5 presents an example of the scheduling of five jobs
using FCFS alone. The jobs J1 and J2 start as soon as they are submitted.
J3 starts as soon as J2 ends and enough resources become available. The jobs
J4 and J5 start after J3 because they arrived later. Given the available idle
resources, J4 could be started before J3 to increase utilization. However, FCFS
does not support such changes in job order.

The backfilling algorithm solves the underutilization problem by starting

11

Figure 2.5: Scheduling with FCFS
alone: idles resources over J2.

Figure 2.6: Scheduling with FCFS and
backfilling: job J4 is backfilled.

waiting jobs whose execution would not delay previous jobs in the queue. An
example of its e↵ect is presented in Figure 2.6. The job J4 is scheduled before
J3 because it does not delay the latter job’s expected start time (which is after
J2 ends). However, J5 is started after J3 because its backfilling (plotted with
dotted lines) would delay the start of J3 (favoring wait time control) .

These two algorithms are the most common scheduling mechanisms present
in HPC schedulers. They are e↵ective in achieving high utilization and pro-
ducing turnaround times (enforced in the waiting queue order) that reflect
the jobs’ priorities. However, they do not take into account any application-
specific characteristics, which may lead to suboptimal scheduling, for example
by generating long turnaround times for workflows as intermediate wait times
accumulate. Some of the work presented in this thesis (Paper V) involved
modifying these mechanisms to improve workflow scheduling.

2.3.3 Placement, accounting, and other functions
Although beyond the scope of this thesis, HPC schedulers include several mech-
anisms that are needed to manage an HPC system. Among other things, they
incorporate placement systems that calculate which resources should be used
for specific jobs. These subsystems’ decisions take into account the network
topology or special job requirements. For instance, in a system with a fat-tree
interconnect topology [35], a tightly coupled application will run faster if all
its assigned nodes are leaves pending from same network switch. Otherwise,
inter-node latencies may vary, slowing down all the application’s processes.

HPC systems also require accounting to register the use of compute hours
and resources by user jobs. In general, HPC centers assign allocations of core-
hours or system shares to users and projects (i.e. quotas). Accounting is
required to prevent users from utilizing the system beyond their assigned quota
(e.g. by de-prioritizing their jobs) and to encourage those who have not used
it (e.g. by elevating the priority of users with little quota usage).

Finally, workload managers include functions to handle the basic operations
to run an HPC system, such as managing the compute resources, staging-in
jobs, controlling their execution, and staging-out resources.

12

Chapter 3

New scheduling challenges

The use of HPC in scientific research is increasing, introducing new application
models into HPC workloads and necessitating increases in the capacity of HPC
systems. This chapter outlines some of the challenges of scheduling and running
these new HPC workloads. It also describes the di�culties of building larger
HPC systems, many of which relate to the limitations of current semiconductor
technologies, and the resulting challenges for HPC schedulers.

3.1 Present and future workloads

New scientific applications are changing the scientific workload landscape. HPC
workloads were traditionally, dominated by large parallel tightly-coupled appli-
cations, but recent years have seen dramatic increases in the prevalence of other
application types including significantly more data-intensive and high through-
put applications, workflows, and malleable jobs. This section describes the
requirements of such applications and the challenges they present for HPC
systems and schedulers.
Data-intensive workloads: Many scientific discoveries are supported by data
produced by scientific simulations run in HPC systems (e.g. atmospheric simu-
lations). Also, a large corpus of science is based on analyzing data generated
during real world experiments (e.g. large hadron collider experiments). In-
creases in sensor resolutions and the availability of compute capacity are caus-
ing the quantities of data produced by experiments and simulations to grow
at unprecedented rates. This has increased the importance and complexity of
data analysis in science, establishing what has been described as the “fourth
paradigm” [27]: scientific discoveries resulting from the use of data-intensive
and data analysis processes to interpret, group, and correlate large datasets.

However, the performance model of data intensive applications often dif-
fers from that of the parallel tightly-coupled applications (e.g., MPI) [22] that
historically dominated HPC workloads and guided the design of HPC systems

13

and their schedulers. While the performance of MPI applications depends on
execution uniformity and communication latency [7], data-intensive applica-
tions’ performance typically depends on memory and I/O performance [22].
For example, the interconnect of an HPC system dominated by I/O intensive
applications will be heavily utilized, increasing the possibility of network hot-
spot formation and congestion, and reducing the system’s overall performance.
Consequently, future schedulers will require placement systems that account
for the system’s network topology and the expected I/O tra�c generated by
individual applications.
Old and new characteristics: Some characteristics of applications are rarely
taken into account by modern schedulers. For example, malleable applications
support changes in resource allocation during their runtime [25]. Such appli-
cations were rare in traditional HPC workloads, so few HPC schedulers incor-
porate mechanisms for exploiting their malleability. However, data-intensive
applications are often malleable and are becoming important components of
HPC workloads. Therefore, the importance of managing malleability is grow-
ing. Malleability presents opportunities to increase system utilization or, as
described in Paper III [47], to quickly borrow resources for other applications.

On the other hand, new applications may have new requirements. For ex-
ample, the Advanced Light Source [32] is a particle accelerator that produces
high quality infra-red and x-ray beams to ”illuminate” experiments. These
experiments produce large amounts of data that are transferred to NERSC
systems for later processing and later analysis. These experiments would be-
nefit from real time data processing - for example, scientists could use live
feedback [10] to adjust their experimental conditions in real time. This could
be enabled by running the experiment application using pre-allocated resources
at a planned time (i.e. by making advance resource reservations). However,
such practices significantly reduce overall utilization, especially because exper-
iments’ start times are hard to predict. Consequently, it is di�cult to schedule
quasi-real time applications without reducing utilization. To ease this problem,
we propose a model (Paper III [47]) that takes advantage of the presence of
malleable applications to temporarily borrow resources and allocate them to
real-time applications. Another approach has been implemented by NERSC
[29]: ”real-time jobs” are allocated small resource sets but are given extremely
high priority. They are then run in a partition of the system where jobs’
runtimes are observed to be short. Because the probability of a job to end in
this partition is high at any given moment, resources are often freed up for the
real-time applications. This strategy enables wait times of about two minutes,
which is close to real-time for a batch job.
Workflows: Scientific applications are becoming more complex, requiring the
composition of various applications with di↵erent resource requirements [51]
or compute models. In a very simple example, a simulation stage requiring a
large parallel allocation is often followed by a data analysis job that processes
the simulation’s results using a long serial job code. Also, applications running
on a heterogeneous system could potentially use di↵erent resource types at dif-

14

ferent stages of their execution. For instance, an application might use regular
compute nodes supporting MPI in a first stage, followed by a machine learning
classification stage that requires compute nodes with GPUs and large memory.

In both cases, the application consists of di↵erent tasks that can be allocated
as di↵erent jobs, together forming a workflow. However, current schedulers’
workflow support is limited to o↵ering job dependencies. In this approach,
users submit workflows as a group of jobs and dependencies, which prevent one
job from starting until the jobs it depends on have successfully completed. This
leads to long intermediate wait times and overall turn-around times because
the scheduler does not consider whether a job belongs to a workflow or not.
Consequently, users often run workflows as pilot jobs, which are allocated the
maximum resources required at any point in the workflow’s runtime for the
entire duration of that runtime. This minimizes the job’s turnaround time, but
wastes resources through over-allocation.

This thesis presents new ways of solving such problems. For example, it
introduces a scheduling model that includes di↵erent schedulers for batch jobs
and workflows (Paper III [47]), eliminating the interference of regular jobs and
reducing the workflow’s intermediate wait time. It also details an algorithm
for modifying the scheduler’s job waiting queue (Paper V [44]), which enables
regular schedulers to minimize their turnaround time without over-allocating
resources.
Job diversity: MPI applications, data intensive applications, malleable jobs,
real time jobs, workflows, and regular jobs co-exist in current HPC workloads
[8]. This application diversity poses new challenges for the scheduling process.
For example, applications may be a↵ected di↵erently by the scheduler’s de-
cisions - the wait time of a workflow job a↵ects the total workflow turnaround.
Also, di↵erent applications may have di↵erent performance objectives: real
time jobs must be run as quickly as possible, whereas regular jobs need only
achieve “reasonable” turnaround times. Moreover, some applications support
specific scheduling operations, e.g., malleable jobs support online re-sizing of
their resource allocations. However, current HPC schedulers treat all applica-
tions equally, and specific scheduling behaviors are enforced by tweaking the
scheduler’s configuration. For example, real-time applications at NERSC are
run as high priority jobs on a partition containing small, fast-running jobs [29].

This thesis presents an alternative model (Paper III [47]) in which independ-
ent schedulers manage applications of di↵erent types. This makes it possible
to compare similar applications using the same criteria and incorporate mech-
anisms for exploiting their unique characteristics or ensuring that their unique
requirements are satisfied.

Finally, application diversity also a↵ects the geometry of the jobs in the
workload. The characterization of NERSC workloads presented in Paper I
[46] includes an analysis of this phenomenon, revealing that batch jobs in the
Edison, Hopper, and Carver workloads are very diverse in their geometries.
Moreover, it is shown that a job’s wait time may depend on the geometry
diversity within its priority group (queue).

15

3.2 Future systems
Because Grand Challenge science is increasingly supported by simulations, data
analysis, and numerical methods, larger and more powerful HPC systems are
required to increase scientific research capacity. Increases in capacity were
traditionally achieved by adding more compute nodes and increasing processor
frequency, the amount of RAM per compute node, and the size of the parallel
file system. However, the limitations of current semiconductor technologies
have made some of these strategies ine↵ective or impractical. This section
presents some of the challenges of scaling up modern HPC systems and their
impact on system schedulers.

3.2.1 Dennard scaling break and processor parallelism
Dennard’s scaling law is related to Moore’s law, and states that the performance
per watt of computing devices is growing exponentially at a constant rate [26].
This has made it possible to increase the number of transistors per chip surface
unit and their operating frequencies without causing major increases in the
processors’ power budgets and heat dissipation. This was responsible for much
of the increase in the capacity of all computational systems up until 2006,
a year that has been described as the Dennard scaling break [26]. Since then,
processors’ transistor counts and parallelism have increased but their operating
frequencies have not, and in some cases have even fallen slightly. Consequently,
recent processor speed-ups have been much more gradual than before the break.

The primary reason for the break is that transistors have become so small
that their switching frequency is limited by current leakage. Higher frequencies
imply more residual heat production and power consumption, which has two
side e↵ects [24]: (1) processor frequencies cannot increase at historical rates,
reducing processing speed-ups; and (2) adding more cores to the processors
increases their capacity, but the higher number of active switching elements still
increases overall power consumption and makes CPU heat dissipation problems
more severe. These problems can be mitigated (but not eliminated) by using
concepts such as the dark silicon approach [24], whereby some of the chip’s
circuits are powered down as necessary to keep its power consumption within
safe limits. Unfortunately, this limits the chip’s potential performance.

Also, even if higher core parallelization within in processors can be achieved
without power constraints, this will not necessarily deliver perfect performance
scaling. First, increasing the number of cores in a processor increases the like-
lihood of resource contention on caches and memory busses, which reduces
the processor’s e↵ective performance [28]. Also, even assuming perfect hard-
ware parallelization, Amdahl’s law limits the speed-ups that can be achieved
through parallelization and states that these speed-ups depend on the nature of
the workload [28]. Specifically, the performance gain achievable through paral-
lelization depends on the relative prevalence of serial and parallel code within
the application or workload, which in turn depends on the usage patterns of
individual users.

16

3.2.2 The memory gap

Memory technology has been outpaced by Moore’s law, and memory perfor-
mance and power-e�ciency bottlenecks will become more severe in future sys-
tems. This section describes some of the problems arising from these bottle-
necks and limitations.

Ideally, the amount of RAM in compute nodes should grow in parallel with
the number of cores. However, this has not been possible to achieve because
memory density grows more slowly than the scaling implied by Moore’s law
[11]. Put another way, current memory technology is less power-e�cient than
processor technology. Consequently, in recent years the amount of memory per
core in larger systems has been getting smaller, limiting the memory footprint
of applications’ individual processes. Also, the gap between processors’ cycle
times and the memory latency has necessitated the introduction of caches to
prefetch data from the slower memory before the processor requests it. How-
ever, the cache size cannot increase at the same rate as the number of cores
per processor because this would require the cache to take up too much space
on the processor die [24]. This reduces the e�ciency of the cache mechanism
and the performance of memory-related operations in code. Moreover, since
memory technology is less power-e�cient than CPU technology, memory move-
ments and operations are becoming one of the largest contributors to the power
consumption of modern systems [11]. This will limit the potential for increas-
ing the size of memory hierarchies, necessitating the development of alternative
mechanisms to compensate for the memory gap.

The memory gap’s impact is demonstrated by the performance of the #1
super computer on the Top500 list (in March 2017): the Sunway TaihuLight
system [17]. This supercomputer has a theoretical peak performance of 125.4
Pflops/s produced by 10649600 cores over 1.31PB of RAM. Its first perfor-
mance measurements were impressive, with a Linpack benchmark result of 93
Pflops/s, corresponding to 74% of its theoretical peak performance [18]. How-
ever, when tested with benchmarks that model real applications’ data access
patterns (the HPCG benchmark [19]), it achieved only 0.3% of the theoretical
peak performance. This value is much lower than those achieved by the next
two systems in the Top500 (1.1% for Tianhe-2 and 1.2% for Titan), and sug-
gests a lower e�ciency when executing real applications. Initial reports on the
system [18] attribute this low e�ciency to the memory gap, and specifically to
its low number of floating point operations per byte of data transferred from
memory to the chips (22.4 Flops(DP)/Byte transfer) and the small amount of
memory per core (132 MB).

To conclude, the memory gap does not present direct challenges to sche-
dulers. However, the scheduler will be confronted by fragmented resources if
the memory gap problem is solved by increasing heterogeneity because some
resources may be tailored to memory-intensive applications.

17

3.2.3 I/O gap

As with memory, there is also a performance gap between the I/O and pro-
cessing capabilities of HPC systems. Traditional parallel file systems achieve
concurrent high read and write bandwidths by striping and replicating data
across disks and combining their bandwidths in I/O operations. However, in-
creasing compute capacity implies more numerous and larger applications run-
ning concurrently, and, as a consequence, higher aggregated I/O bandwidth
peaks. In older systems, this problem was solved by increasing the parallelism
of the PFS (i.e. adding more disks). However, this is not economically viable
with modern systems: adding more spinning disks is too expensive in terms
of both material costs and energy consumption. Replacing the spinning disks
of PFS with higher bandwidth solid state drives (SSD) would increase over-
all bandwidth capacity and reduce I/O-related power consumption. However
SSDs are currently too expensive to be used in the construction of a complete
PFS [36].

An intermediate solution is to increase the depth of the I/O hierarchy by,
for example, allocating burst bu↵ers to applications. A burst bu↵er is a space
allocated in a small PFS built with SSDs that can absorb peaks in the system’s
I/O operations [36]. For read peaks, data can be pre-fetched in a similar way
as in memory caches. For write peaks, the data can be directly written to
the burst bu↵er and then subsequently ‘drained’ to the main PFS. However,
this poses a new challenge for HPC schedulers because the burst bu↵er space
becomes a new constrained resource to be allocated to applications that (if
poorly managed) can reduce scheduling e�ciency and hence reduce utilization,
leading to longer wait times. For instance, the scheduler must determine a
burst bu↵er allocation for each application that is large enough to absorb the
application’s read and write bursts but not so large as to be underutilized and
unduly limit the burst bu↵er capacity available to other applications.

3.2.4 Hardware heterogeneity

The previous sections dealt with new HPC challenges that were addressed by
adding problem-specific hardware, including application diversity, the limits
of processor frequency speed-ups, growing I/O requirements, and the memory
gap. For example, some modern systems pair regular compute nodes with
GPU-based compute nodes that o↵er better performance in machine learning
or artificial intelligence applications [14].

The increasing heterogeneity of HPC systems poses new challenges for sche-
dulers. For example, an application’s performance may depend on the schedu-
ler’s placements more strongly than was previously the case. Also, applications’
resource requests may no longer be uniform; certain applications might request
specific resource types. In such contexts, the scheduler must assign resources
that satisfy the applications’ demands without fragmenting the resource pool
and thus reducing utilization.

18

3.3 Scheduling research

One challenge in HPC scheduling research relates to how such research should
be performed, because such research requires information, methodology, and
resources that are not always available. This section explores the process of
performing HPC scheduling research and the tools available to support that
process.

Previous studies [48] have defined three basic methods for job scheduling
research:

• Theoretical analysis: in which algorithm behavior is analyzed by identi-
fying boundary cases representing the best- and worst-case performance.
This method can provide insight into the algorithm’s behavior but might
not reflect its expected performance when supporting a real workload.

• Real system experiments: which provide clear measures of the al-
gorithm’s behavior with a real system and workload but require the run-
ning of many di↵erent experiments, which can be challenging for several
reasons. First, allocating real system time is expensive. Also, a single ex-
periment only provides results for one workload and system state, which
is normally not enough to reason about the general case or test a general
hypothesis. Finally, workload conditions are hard to control, so it can be
di�cult to test specific scenarios.

• Simulation: in which a system is emulated, a batch scheduler is run on
the emulated system, and a synthetic workload is submitted to the sche-
duler. This method makes it possible to create di↵erent experimental
scenarios and run experiments on large scale to generate data that en-
ables induction to general conclusions. However, its results are only valid
if the recreated workloads, systems, and scheduling behaviors are repres-
entative.

The works presented in this thesis used simulation and theoretical analysis to
understand how the hierarchical fairshare prioritization engine works (Paper II,
[43]) In addition, the Edison system was modeled after its job logs, and the res-
ulting models were used to perform simulations and evaluate a workflow-aware
scheduling method (a theoretical analysis of this method was also performed
[42] but is not included in this thesis).

Research using scheduling simulations follows the cycle depicted in Fi-
gure 3.1. This process starts with system modeling, which captures the charac-
teristics and typical workloads of the system under investigation. These char-
acteristics are used to configure the simulator and create model workloads that
are representative of the original system. Once the system has been modeled,
an experiment is defined and performed in the simulator, and the scheduler’s
actions are recorded for later analysis. To test a scheduling hypothesis, it is ne-
cessary to define multiple experiments that must be replicated several times to
ensure that representative results are obtained. For example, the experimental

19

Figure 3.1: The scheduler research cycle. Experiments are defined and simu-
lated, and then their results are analyzed. Finally, the resulting data are used
to prove/disprove a hypothesis or suggest new experiments.

testing of one of the workflow scheduling algorithms presented in this thesis
involved testing with six workflow types appearing in five di↵erent patterns,
scheduled with three di↵erent techniques, with six experimental replicates per
combination of pattern, workflow type, and technique. These 540 experiments
spanned six simulated days of Edison’s life, representing 3240 days of super-
computer time. Simulating them on a single instance, would take 320 days (at
an estimated 10x speedup). To avoid such unrealistically long experiments, it
is necessary to perform large-scale concurrent simulations.

However, no tools previously available to the the research community could
be applied to every step in the scheduler research cycle or be used to perform
experiments on large scales. For example, these tools lack modules for workload
analysis and generation. Moreover, their scheduling simulation components are
not powerful enough to run all the necessary experiments within a reasonable
time frame, or they require the use of a scheduler that is unrepresentative of
those used in HPC production systems. To address these issues, Paper IV [45]
presents a new simulation framework that covers every step in the scheduler
research cycle. It can model systems and their workloads to generate equivalent
synthetic workloads. It then emulates the operation of the modeled system
using a real instance of Slurm, and schedules a synthetic workload. It also
provides tools for running concurrent simulations on large scale, and tools for
analyzing their results.

20

Chapter 4

Contributions

This chapter summarizes the contributions of this thesis and the included pa-
pers as outlined in the introduction. The first contribution is a characteriza-
tion of the HPC workloads of three systems at NERSC (Paper I [46]). This
enabled the identification of present and future scheduling challenges such as
the e↵ects of workload diversity on the predictability of jobs’ wait times. The
second contribution is a characterization and improvement of a common HPC
prioritization system: a hierarchical fairshare system (Paper II, [43]). The
third contribution is a survey of present and future scheduling HPC problems
together with a proposed scheduling model that solves some of them (Paper III,
[47]). The development of that model was hindered by a lack of suitable tools
for performing research on HPC scheduling. This led directly to the fourth con-
tribution: the development of an open source scheduling simulation framework
(Paper IV, [45]). This framework allows scheduling researchers to implement
and evaluate scheduling algorithms in the context of the Slurm workload man-
ager. The final contribution is a new workflow-aware scheduling method (Paper
V, [44]) that minimizes workflows’ turnaround times without over-allocating re-
sources. Its implementation is open source and its performance was evaluated
using our scheduling simulation framework.

The following sections of this chapter describe these contributions in more
detail.

4.1 Paper I: Characteristics and trends in HPC
workloads

Paper I [46] analyzes the characteristics of the jobs in the workloads of two
supercomputers (Edison and Hopper) and a high performance cluster (Carver)
at the National Energy Research Scientific Computing Center (NERSC) in
Berkeley, California. The analysis features both a classical characterization of
job variables and a trend analysis based on these variables that accounts for
job diversity.

21

The first contribution of this paper is a novel method for characterizing di-
versity in job geometry (allocated CPU cores and runtime) based on k�means
clustering. This makes it possible to identify dominant job geometries in a
workload and analyze their mapping onto priority queues. The second con-
tribution is a characterization of the NERSC systems’ workloads, providing
reference datasets for the workloads of systems having similar sizes, workloads,
and architectures to Edison, Hopper, and Carver. The third contribution is
the observation that priority queues containing more diverse job geometries
exhibited less predictable wait times. According to the expected batch sche-
duler behavior, for a given priority, larger jobs should have longer wait times.
In addition, for a given job geometry, jobs with higher priority are expected
to wait less. The analysis showed that these expectations are not fulfilled for
queues with more diverse job geometries. This indicated a need to better un-
derstand the e↵ects of job diversity on HPC systems and the performance of
their schedulers.

4.2 Paper II: Prioritization in batch schedulers,
Fairshare

Paper II [43] analyzes the internal mechanisms of Karma, a distributed pri-
oritization mechanism that supports hierarchical policies. This work provides
an expanded understanding of the prioritization system itself and its e↵ect on
the division of the system’s compute time based on a fairshare priority factor.
Karma and similar mechanisms are used in HPC sites to calculate jobs’ fair-
share prioritization factors. These factors account for di↵erences between the
shares of a system that are assigned to users, groups, or institutions, and the
corresponding shares of actual usage. The capacity of this system has been eva-
luated before [39], [23], but this paper goes further than previous evaluations
by explaining how certain system properties emerge from the definition of one
of the model’s key components: the fairshare priority operators. For example,
the hierarchical model makes it possible to assign an allocation share to a pro-
ject and then divide that share among the users belonging to that project. If
one of those users does not consume their allocation, it would be desirable for
the prioritization system to divide that allocation between the project’s other
users, in proportion to their prior allocations within the project. This work
shows how the calculation of some of the operators in Karma produces prior-
ities equivalent to those obtained if the idle user did not exist and the other
project users received a proportional allocation of that user’s share.

The second contribution of this paper is an analysis of the e↵ect of the
resolution of the scheduler’s priority factor on Karma’s capacity to discern
priority di↵erences in hierarchical models with many levels. This revealed that
the factor resolution is divided across the the levels of the priority tree and can
be used to determine the minimum priority factor resolution needed for any
given hierarchical fairshare share tree.

22

4.3 Paper III: A survey of current scheduling
challenges and a position model to ease them

Building on the understanding of current HPC workloads and scheduling mech-
anisms obtained in Papers I [46] and II [43]), Paper III [47] makes two contri-
butions. The first is a a survey of current and future scheduling challenges in
HPC systems and an analysis of their relationships to cloud scheduling chal-
lenges. This survey focuses particularly on the issue of schedulers applying
the same policies to applications with di↵erent performance models and tar-
get objectives. For instance, stream applications that require short wait times
are scheduled by the same mechanisms as workflows whose turnaround times
should ideally be short but depend on the intermediate wait times between
jobs. It also shows that malleable jobs are becoming increasingly common but
most HPC schedulers cannot exploit their particular characteristics, i.e. the
potential to change their resource allocation during their runtime. Finally,
it summarizes other challenges such as the need for deeper memory and I/O
hierarchies in future HPC systems.

The paper’s second contribution is a description of A2L2, an Application
Aware Flexible Scheduling Model for Low Latency Allocation. A2L2 is a cloud-
inspired, two-level scheduling model that supports the use of one scheduler per
application type with a smart resource manager. Each scheduler prioritizes
applications of the appropriate type, and thus is not required to compare appli-
cations with di↵erent performance models and targets (Application Aware).
Schedulers in such system could o↵er application-specific capabilities, such as
dynamic resource allocation for malleable applications (Flexible). The underly-
ing smart resource manager provides primitives to request resources with short
wait times using borrow operations. During a borrow operation, the resource
manager takes resources from schedulers that manage malleable applications
and lends them to the requesting scheduler. This enable support for almost
real time (Low Latency) jobs by allowing resources to be freed rapidly enough
for such jobs to be allocated.

4.4 Paper IV: Building tools for scheduling re-
search

The evaluation of job scheduling algorithms by simulation involves a research
cycle consisting of system and workload modeling, workload generation, sche-
duling and simulation, and result analysis. However, the analysis and imple-
mentation of scheduling techniques reported in Papers I-III was hampered by
a lack of suitable publicly available research tools to support this cycle.

The contribution of Paper IV [45] is ScSF, an open source Scheduling Si-
mulation Framework that can be used by future scheduling researchers. ScSF
includes tools for running and coordinating every step of the simulation research

23

cycle. It creates system models that can subsequently be used in experiments.
Users can define experiments based on a system and model workloads while also
incorporating experimental conditions needed to analyze a specific scheduling
behavior, such as a particular configuration of the priority engine, the presence
of certain types of workflows in the workload, or a workload engineered to test
classic backfilling e�ciency. The framework runs these experiments automa-
tically, generating synthetic workloads that are submitted to an instance of a
Slurm simulator. The Slurm simulator emulates the resources of the chosen
system model, replays the job submission, and executes a real instance of the
Slurm scheduler with modifications of the time routines to accelerate its execu-
tion. The framework also includes tools to analyze relevant scheduling variables
in the resulting scheduling logs and perform comparisons across experiments.

The number of experiments performed to test scheduling hypotheses can
be large as the system, and there are multiple degrees of freedom in terms of
workload composition. Therefore, the framework can be used to run large scale
experiments. The paper demonstrates this capability by running the framework
over 161 VMs across a distributed infrastructure of 17 physical compute nodes
at LBL and Ume̊a University. The final contribution of this paper is a set of
lessons learned from the process of running large scale scheduling simulations
that will be useful to future researchers.

All the components of the framework other than Slurm and its simulator
were created by the authors. Additionally, Slurm was modified to increase its
simulation speed while preserving time determinism.

4.5 Paper V: Workload-aware scheduling in HPC
systems

One of the challenges identified in Paper III [47] was the scheduling of workflows
within HPC systems. Workflows are often run as a group of jobs related by
completion dependencies, leading to long intermediate wait times and thus
long turnaround times. An alternative possibility is to run all the workflow
tasks within a single pilot job that is allocated the maximum resources required
within the workflow throughout its runtime, potentially causing some resources
to be idle during some stages of the workflow.

The main contribution of Paper V [44] is WoAS, a new Workflow Aware
Scheduling algorithm that can minimize workflows’ intermediate wait times
(and thus their turnaround times) without over-allocating resources. Using
this technique, workflows are initially represented in the same way as in the
pilot job approach. However, the pilot job includes extra information that
describes the workflow’s internal structure. This information is used by the
scheduler to modify the representation of the workflow during di↵erent stages
of its scheduling: it is treated as a pilot job during prioritization but then its
internal tasks are exposed to the FCFS and backfilling algorithms.

An open-source implementation of the algorithm was incorporated into

24

Slurm and evaluated in the ScSF framework by simulating workloads with
di↵erent types and abundances of workflows. It was found that the WoAS
can run workflows with turnaround times that are significantly shorter than
for the chained jobs approach (achieving speedups of up to 3.75x) and almost
match those achieved using the pilot jobs approach, but without allocating
extra resources.

25

Bibliography

[1] Data analytics (at NERSC),
http://www.nersc.gov/users/data-analytics/data-analytics/

[2] Edison file storage and I/O,
http://www.nersc.gov/users/computational-systems/edison/file-storage-and-i-o/

[3] MVAPICH, http://mvapich.cse.ohio-state.edu/

[4] NERSC’s Edison, Top 500, https://www.top500.org/system/178443

[5] NERSC’s Hopper, Top 500, https://www.top500.org/system/176952

[6] Open mpi, https://www.open-mpi.org/

[7] Adhianto, L., Chapman, B.: Performance modeling of communication and
computation in hybrid MPI and OpenMP applications. Simulation Mod-
elling Practice and Theory 15(4), 481–491 (2007)

[8] Ahern, S., Alam, S.R., Fahey, M.R., Hartman-Baker, R.J., Barrett, R.F.,
Kendall, R.A., Kothe, D.B., Mills, R.T., Sankaran, R., Tharrington, A.N.,
et al.: Scientific application requirements for leadership computing at the
exascale. Tech. rep., Oak Ridge National Laboratory (ORNL); Center for
Computational Sciences (2007)

[9] Antypas, K., Austin, B., Butler, T., Gerber, R., Whitney, C., Wright, N.,
Yang, W.S., Zhao, Z.: NERSC workload analysis on hopper. Tech. rep.,
Technical report, LBNL Report (2013)

[10] Bauer, M.A., Biem, A., McIntyre, S., Tamura, N., Xie, Y.: High-
performance parallel and stream processing of x-ray microdi↵raction data
on multicores. In: Journal of Physics: Conference Series. vol. 341, p.
012025. IOP Publishing (2012)

[11] Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau,
M., Franzon, P., Harrod, W., Hill, K., Hiller, J., et al.: Exascale comput-
ing study: Technology challenges in achieving exascale systems. Defense
Advanced Research Projects Agency Information Processing Techniques
O�ce (DARPA IPTO), Tech. Rep 15 (2008)

27

[12] Bethel, E., Leinweber, D., Rübel, O., Wu, K.: Federal market informa-
tion technology in the post flash crash era: roles for supercomputing. In:
Proceedings of the fourth workshop on High performance computational
finance. pp. 23–30. ACM (2011)

[13] Bhat, P.B., Lim, Y.W., Prasanna, V.K.: Issues in using heterogeneous hpc
systems for embedded real time signal processing applications. In: Real-
Time Computing Systems and Applications, 1995. Proceedings., Second
International Workshop on. pp. 134–141. IEEE (1995)

[14] Catanzaro, B.: Deep learning with COTS HPC systems (2013)

[15] Chiang, S.H., Vernon, M.K.: Production job scheduling for parallel shared
memory systems. In: Parallel and Distributed Processing Symposium.,
Proceedings 15th International. pp. 10–pp. IEEE (2001)

[16] Declerck, T.M., Sakrejda, I.: External Torque/Moab on an XC30 and
Fairshare. Tech. rep., NERSC, Lawrence Berkeley National Lab (2013)

[17] Dongarra, J.: Report on the Sunway Taihulight system. www. netlib. org.
Retrieved June 20 (2016)

[18] Dongarra, J.: Sunway TaihuLight supercomputer makes
its appearance. National Science Review 3(3), 265 (2016),
http://dx.doi.org/10.1093/nsr/nww044

[19] Dongarra, J., Heroux, M.A.: Toward a new metric for ranking high per-
formance computing systems. Sandia Report, SAND2013-4744 312 (2013)

[20] Dongarra, J., Sterling, T., Simon, H., Strohmaier, E.: High-performance
computing: clusters, constellations, mpps, and future directions. Comput-
ing in Science & Engineering 7(2), 51–59 (2005)

[21] Dongarra, J., et al.: The international exascale software project roadmap.
International Journal of High Performance Computing Applications p.
1094342010391989 (2011)

[22] Ekanayake, J., Pallickara, S., Fox, G.: Mapreduce for data intensive sci-
entific analyses. In: eScience, 2008. eScience’08. IEEE Fourth International
Conference on. pp. 277–284. IEEE (2008)

[23] Elmroth, E., Gardfjäll, P.: Design and evaluation of a decentralized system
for Grid-wide fairshare scheduling. In: H. Stockinger et al (ed.) Proceed-
ings of e-Science 2005. pp. 221–229. IEEE CS Press (2005)

[24] Esmaeilzadeh, H., Blem, E., St Amant, R., Sankaralingam, K., Burger,
D.: Dark silicon and the end of multicore scaling. In: ACM SIGARCH
Computer Architecture News. vol. 39, pp. 365–376. ACM (2011)

28

[25] Feitelson, D.G., Rudolph, L.: Toward convergence in job schedulers for
parallel supercomputers. In: Workshop on Job Scheduling Strategies for
Parallel Processing. pp. 1–26. Springer (1996)

[26] Haensch, W., Nowak, E.J., Dennard, R.H., Solomon, P.M., Bryant, A.,
Dokumaci, O.H., Kumar, A., Wang, X., Johnson, J.B., Fischetti, M.V.:
Silicon cmos devices beyond scaling. IBM Journal of Research and Devel-
opment 50(4.5), 339–361 (2006)

[27] Hey, T., Tansley, S., Tolle, K.M., et al.: The fourth paradigm: data-
intensive scientific discovery, vol. 1. Microsoft research Redmond, WA
(2009)

[28] Hill, M.D., Marty, M.R.: Amdahl’s law in the multicore era. Computer
41(7) (2008)

[29] Jacobsen, D.: NERSC Site Report-One year of Slurm. In: Slurm User
Group 2016 (2016)

[30] Jacobsen, D.M., Canon, R.S.: Contain this, unleashing docker for hpc.
Proceedings of the Cray User Group (2015)

[31] Kannan, S., Roberts, M., Mayes, P., Brelsford, D., Skovira, J.F.: Workload
management with loadleveler. IBM Redbooks 2(2) (2001)

[32] Kilcoyne, A., Tyliszczak, T., Steele, W., Fakra, S., Hitchcock, P., Franck,
K., Anderson, E., Harteneck, B., Rightor, E., Mitchell, G., et al.:
Interferometer-controlled scanning transmission X-ray microscopes at the
advanced light source. Journal of synchrotron radiation 10(2), 125–136
(2003)

[33] Kim, J., Dally, W.J., Scott, S., Abts, D.: Technology-driven, highly-
scalable dragonfly topology. In: ACM SIGARCH Computer Architecture
News. vol. 36, pp. 77–88. IEEE Computer Society (2008)

[34] Kim, Y., Gunasekaran, R.: Understanding i/o workload characteristics of
a peta-scale storage system. The Journal of Supercomputing 71(3), 761–
780 (2015)

[35] Leiserson, C.E.: Fat-trees: universal networks for hardware-e�cient su-
percomputing. IEEE transactions on Computers 100(10), 892–901 (1985)

[36] Liu, N., Cope, J., Carns, P., Carothers, C., Ross, R., Grider, G., Crume,
A., Maltzahn, C.: On the role of burst bu↵ers in leadership-class storage
systems. In: Mass Storage Systems and Technologies (MSST), 2012 IEEE
28th Symposium on. pp. 1–11. IEEE (2012)

[37] Mell, P., Grance, T., et al.: The nist definition of cloud computing (2011)

29

[38] Merkel, D.: Docker: lightweight linux containers for consistent develop-
ment and deployment. Linux Journal 2014(239), 2 (2014)

[39] Östberg, P.O., Espling, D., Elmroth, E.: Decentralized scalable fairshare
scheduling. Future Generation Computer Systems - The International
Journal of Grid Computing and eScience 29 pp. 130–143 (2013)

[40] Raicu, I., Foster, I.T., Zhao, Y.: Many-task computing for grids and su-
percomputers. In: Many-Task Computing on Grids and Supercomputers,
2008. MTAGS 2008. Workshop on. pp. 1–11. IEEE (2008)

[41] Rockel, B., Will, A., Hense, A.: The regional climate model COSMO-CLM
(CCLM). Meteorologische Zeitschrift 17(4), 347–348 (2008)

[42] Rodrigo, G.P.: Theoretical analysis of a workflow aware scheduling al-
gorithm. Tech. Rep. UMINF17.06, Ume̊a University (2017)

[43] Rodrigo, G.P., Östberg, P.O., Elmroth, E.: Priority operators for fair-
share scheduling. In: Workshop on Job Scheduling Strategies for Parallel
Processing. pp. 70–89. Springer (2014)

[44] Rodrigo, G.P., Elmroth, E., Östberg, P.O., Ramakrishnan, L.: Enabling
Workflow Aware Scheduling on HPC systems. Submitted (2017)

[45] Rodrigo, G.P., Elmroth, E., Östberg, P.O., Ramakrishnan, L.: ScSF:
A Scheduling Simulation Framework. In: Workshop on Job Scheduling
Strategies for Parallel Processing. Accepted, Springer (2017)

[46] Rodrigo, G.P., Östberg, P.O., Elmroth, E., Antypas, K., Gerber, R., Ra-
makrishnan, L.: Towards Understanding HPC Users and Systems: A
NERSC Case Study. Submitted (2017)

[47] Rodrigo, G.P., Ramakrishnan, L., Östberg, P.O., Elmroth, E.: A2L2: an
Application Aware flexible HPC scheduling model for low latency alloca-
tion. In: The 8th International Workshop on Virtualization Technologies
in Distributed Computing (VTDC) (2015)

[48] Schwiegelshohn, U.: How to design a job scheduling algorithm. In: Work-
shop on Job Scheduling Strategies for Parallel Processing. pp. 147–167.
Springer (2014)

[49] Snir, M., Otto, S., Walker, D., Dongarra, J., Huss-Lederman, S.: MPI:
The complete reference. MIT Press Cambridge, MA, USA (1995)

[50] Srinivasan, S., Kettimuthu, R., Subramani, V., Sadayappan, P.: Charac-
terization of backfilling strategies for parallel job scheduling. In: Parallel
Processing Workshops, 2002. Proceedings. International Conference on.
pp. 514–519. IEEE (2002)

30

[51] Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M.: Workflows for e-
Science: scientific workflows for grids. Springer Publishing Company, In-
corporated (2014)

[52] Team, R.C.: R language definition. Vienna, Austria: R foundation for
statistical computing (2000)

[53] Vetter, J.S., Mueller, F.: Communication characteristics of large-scale sci-
entific applications for contemporary cluster architectures. Journal of Par-
allel and Distributed Computing 63(9), 853–865 (2003)

[54] Yoo, A., Jette, M., Grondona, M.: SLURM: Simple Linux Utility for
Resource Management. In: Feitelson, D., Rudolph, L., Schwiegelshohn,
U. (eds.) Job Scheduling Strategies for Parallel Processing, Lecture Notes
in Computer Science, vol. 2862, pp. 44–60. Springer Berlin / Heidelberg
(2003)

[55] Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark:
cluster computing with working sets. HotCloud 10 (2010)

31

Paper I

Towards Understanding HPC Users and Systems:
A NERSC Case Study

Gonzalo P. Rodrigo, Per-Olov Östberg, Erik Elmroth, Katie Anty-
pas, Richard Gerber, and Lavanya Ramakrishnan

Submitted 2017 Extends two previously published papers of the same authors:
1) HPC System Lifetime Story: Workload Characterization and Evolutionary
Analyses on NERSC Systems published at the 24th International ACM Sym-
posium on High-Performance Distributed Computing (HPDC), 2015
2) Towards Understanding Job Heterogeneity in HPC: A NERSC Case Study
published at the 16th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid), 2016

Towards Understanding HPC Users and Systems: A NERSC Case Study

Gonzalo P. Rodrigoa,1, P-O Östberga, Erik Elmrotha, Katie Antypasb, Richard Gerberb, Lavanya Ramakrishnanb

a
Dept. Computing Science, Ume̊a University SE-901 87, Ume̊a, Sweden

b
Lawrence Berkeley National Lab Berkeley, CA 94720, USA

Abstract

The high performance computing (HPC) scheduling landscape is changing. Previously dominated by tightly coupled MPI
jobs, HPC workloads are increasingly including high-throughput, data-intensive, and stream-processing applications. As
a consequence, workloads are becoming more diverse at both application and job level, posing new challenges to classical
HPC schedulers. There is a need to understand the current HPC workloads and their evolution towards the future in
order to perform informed scheduling research and enable e�cient scheduling in future HPC systems.

In this paper, we present a methodology to characterize workloads and asses their heterogeneity, both for a particular
time period and as they evolve over time. We apply this methodology to the workloads of three systems (Hopper,
Edison, and Carver) at the National Energy Research Scientific Computing Center (NERSC). We present the resulting
characterization of jobs, queues, heterogeneity, and performance that includes detailed information of a year of workload
(2014) and evolution through the systems’ lifetime. Among the results, we highlight the observation of discontinuities
in the jobs’ wait time for priority groups with high job diversity. Finally, we conclude by summarizing our analysis to
establish a reference and inform future scheduling research.

Keywords: workload analysis, supercomputer, HPC, scheduling, NERSC, heterogeneity, k -means

1. Introduction

High performance computing (HPC) supports scientific
research by providing capacity to run large simulations
or solve large mathematical problems. Such applications
largely rely on the tightly coupled MPI model, which, as
a consequence, has dominated HPC workloads. However,
the workload configuration is changing as HPC systems’
use evolves. For instance, some scientific fields like biology
or astrophysics increasing rely on analysis of large datasets.
Also, as compute capacity keeps growing, simulations pro-
duce larger datasets that require analysis. Finally, semi-
conductor advances enable real experiments to produce
higher resolution data that requires processing. Pushed by
these use-cases, workloads are becoming more diverse, in-
creasing the importance of high-throughput, data-intensive,
and stream-processing applications. These applications
di↵er in performance models and target objectives from
the classical parallel tightly coupled. As a consequence,
current HPC schedulers might not produce optimal de-
cisions since they support diverse workloads which confi-
gurations di↵er from what batch schedulers were designed
to support (uniform and MPI dominated).

Supporting the new workload landscape and its future
evolution requires new scheduling models that need to be

Email addresses: gonzalo@cs.umu.se (Gonzalo P. Rodrigo),
p-o@cs.umu.se (P-O Östberg), elmroth@cs.umu.se (Erik Elmroth),
kantypas@lbl.gov (Katie Antypas), ragerber@lbl.gov (Richard
Gerber), lramakrishnan@lbl.gov (Lavanya Ramakrishnan)

1Work performed in part at the Lawrence Berkeley National Lab.

investigated. Such research must be informed by a charac-
terization of the state, with a focus on diversity, of current
workloads in HPC centers and their evolution. However,
existing work on workload modeling [1] characterizes sys-
tems that are too old, too small, or not representative of
the top HPC systems. Also, previous work did not focus on
the workload diversity, a new trait present in recent work-
loads. Thus, there is a need to investigate the workloads in
current HPC centers to understand users and applications
requirements and project them in the future.

In this work, we present a methodology to character-
ize HPC workloads in detail. It includes classical work-
load analysis methods such as value distribution analysis
on job variables (e.g., degree of parallelism or runtime),
system utilization estimation, or overall wait time analy-
sis. However, it includes an innovative method to analyze
job geometry (allocated resources and runtime) diversity.
This method employs k -means clustering to identify dom-
inating groups of jobs in the workload according to their
geometry (runtime and allocated CPU cores). Under this
analysis, workloads with more job geometry clusters are
considered more diverse, and vice versa. Also, job groups
can be mapped on the waiting queues (priority categories)
to analyze jobs diversity within each queue. Consequently,
an analysis of the correlation of queue diversity and wait
times for jobs of di↵erent sizes is performed. This analy-
sis verifies that jobs’ wait time match the expected values
according to priority and system configuration (i.e., larger
jobs should wait longer, higher priority jobs should wait

Preprint submitted to Journal of Parallel and Distributed Computing 22nd March 2017

35

shorter) or if they deviate due to job heterogeneity.
We apply this methodology to the workloads of three

systems (Hopper, Carver, and Edison) at the National
Energy Research Scientific Computing Center (NERSC)
[2]. The output of these analyses is a reference of the work-
loads of three systems representative of others at the HPC
community: Carver is a terascale IBM high performance
cluster built on commodity hardware supported by an In-
finiband interconnect; Hopper is an early petascale Cray
supercomputer based on AMD processors; and Edison is
a more modern and energy e�cient petascale Cray super-
computer based on Intel processors. The results include
a detailed analysis on the jobs, queues, and system beha-
vior in each year over their lifetime for the Hopper and
Carver and in 2014’s for Edison. Yearly data of Hopper
and Carver is compared to produce a trend analysis that
allows to observe the evolution of their lifetime. These
results establish a first data-point to predict future HPC
workloads to designing future resource management mo-
dels.

Our workload analysis methodology can also be used
to support informed short-term and long-term decisions at
HPC centers. Periodical workload analyses can be aggre-
gated in a growing trend analysis that can reveal changes
in the user behavior and system performance. Also, the
boundary geometries (i.e. runtime and degree of paral-
lelization) in workload’s job clusters might be used as a
starting template to define priority groups (queues) to
avoid mixed queues and minimize discontinuities in ex-
pected job wait time behavior.

Specifically, in this paper:

• We propose analysis methods to understand and com-
pare the workload diversity: how self similar are jobs
in the workload and their mapping on the prioritiza-
tion queues.

• We define a method to analyze the wait time of jobs
depending on their geometry, queue priority, and di-
versity.

• We provide a detailed job, queue, performance, and
diversity characterization of the NERSC workload,
and their evolution over time. The results allow to
understand the users, system behavior, and the e↵ect
of queue heterogeneity on jobs’ wait time.

• We present a summary of analysis results and com-
pare them with characterizations of other existing
HPC workloads.

The rest of the paper is organized as follows. We
present background on HPC systems, scheduling, and work-
load analysis in Section 2. A high level description of our
method and the analyzed systems is presented in Section 3.
The details of the methodology and its application to the
NERSC workloads are described in Sections 4 to 7. Fi-
nally, we provide a summary of our results together with
conclusions in Section 8.

This work includes and extends previously published
work from the same authors [3], [4].

2. Background

This section describes the challenges in the HPC com-
munity that motivate this work and presents background
on parallel job scheduling and workload analysis relevant
to understand our methodology and results.

2.1. Challenges in HPC scheduling

The challenges of resource management in HPC are
changing. New application characteristics and technolo-
gical shifts are bringing new concepts and requirements to
the scheduling models and system architectures. In this
section, we highlight some workloads’ changes that stress
the importance of our analysis methods.

Stream applications are becoming more present in HPC
systems. Scientists conduct experiments that would bene-
fit from real-time processing of large amounts of data on
HPC systems (e.g. X-Ray Micro-di↵raction on Advanced
Light Source at LBNL [5]). Real-time processing could
potentially be performed by providing resources through
advance reservations. Advance reservations, however, have
a negative impact on the overall utilization, showing the
need for real-time scheduling (i.e. low-latency allocation
of resources, with no previous reservation as a response
to a real-time event). As another step in application evo-
lution, scientific experiments in fields like biology, earth
sciences, or high energy physics are increasingly relying
on data analysis to extract useful information from large
experimental datasets, or results from large simulations
[6], [7]. These applications increase the importance of
data-intensive computational models in HPC workloads,
or the composition of di↵erent applications through work-
flows (e.g., simulation followed by results analysis). These
changes motivate us to analyze the workloads at super-
computers to understand their current characteristics.

The importance of stream and data intensive applica-
tions point at an increasing diversity in workloads not only
dominated by large tightly coupled parallel jobs. Diversity
might a↵ect the performance of the scheduler, which go-
verns the execution of applications in HPC systems. For
example, the impact of the scheduling decisions is di↵erent
across applications: e.g. delaying one job belonging to a
workflow may have a significant impact on its overall run
time, while delaying a stream job that has to be rapidly
scheduled might render it useless. Also, schedulers are un-
aware of the di↵erent architecture-related constraints in
applications (e.g. I/O bound performance, loosely coupled
jobs, and data locality). However, information about such
constraints is required for the scheduler to perform op-
timal placement decisions to maximize the applications’
performance. Understanding the impact of the application
diversity on the system motivates our workload heteroge-
neity analysis.

2.2. Scheduling

HPC schedulers optimize job placement to achieve the
highest system utilization possible with a reasonable turn-

2

36

System Vendor Model Built Nodes Cores/N Cores Memory Network TFlops/s Service
Hopper Cray XE6 2010 6,384 24 154,216 212 TB Gemini 1280 Jan’10
Edison Cray XC30 2013 5,576 24 133,824 357 TB Aries 2570 Jan’13
Carver IBM iDataPlex 2010 1,120 8/12/32 9,984 147 TB Infiniband 106.5 Apr’10

Table 1: Edison, Hopper, and Carver characteristics

around time according to the job priority. The most com-
mon base technique in schedulers is FCFS (First-Come,
First-Served) [8]. With FCFS, jobs are selected in or-
der, reserving the associated resources required for a job.
However, with FCFS, the scheduler has to drain the sys-
tem in order to schedule a large job, leading to resource
fragmentation that reduces the overall utilization. Thus,
backfilling is normally used to move jobs forward to fill re-
source gaps produced by the FCFS. Backfilling provides an
ordered search in the waiting queue to map jobs to empty
resource windows even if they are not at the head of the
queue [9].

The quality of the results of the backfilling algorithm
depends on the user’s wall clock time estimation [8]. If
a job wall clock time is overestimated, the scheduler will
assign an unnecessary large resource window, reducing the
opportunities to schedule a job through backfilling. On the
contrary, if wall clock time is underestimated (i.e., runs
over its limit), the system will kill the job resulting in
lost work. These e↵ects motivate the jobs wall clock time
accuracy (relationship between estimated and actual wall
clock time) characterization presented in Section 4.2.

Finally, a job’s turnaround time depends on its prior-
ity (influencing its progress on the scheduler wait queue in
each scheduling pass), geometry (jobs requiring more re-
sources are harder to schedule), and requested resource
load (how many jobs compete for the same resources).
However, job diversity in the queues might a↵ect this re-
lationship. In Section 6.2 we present an analysis of the
possible impact of these factors (including job diversity)
on the job’s wait time.

2.3. Related work on workload analysis

Previous work on scientific Grid and HPC workloads
characterization is found in the Grid Workloads Archive
[10] and the Parallel Workload Archive [1]. The archives
contain job and performance characteristics (run time, par-
allelism, inter-arrival time, wait time, disk space, and
memory), but their analyses overlook the workload he-
terogeneity. Also, analyzed systems are either at least 10
years old or significantly smaller than the current top HPC
systems. Our work extends them by addressing jobs’ he-
terogeneity and performing analyses on large, more recent
systems (e.g. Edison was deployed in 2014 and still ranks
60 in the Top 500 list in February 2017).

Job heterogeneity has been observed in industrial work-
load diversity analysis [11], which introduces k-means as
a tool for job similarity clustering. This work inspired our
workload diversity analysis method for HPC workloads,
which we complemented with per queue analysis and a

new methodology to compare the degree of heterogeneity
across systems and system states.

A previous analysis [12] on the applications run on Ho-
pper in 2012 characterizes the importance of the di↵erent
applications run on the system, with an initial insight on
the jobs’ geometry and memory requirements.

3. Methodology

In this section we describe the three systems analyzed
(their characteristics, workload, scheduling model, and con-
figuration), our data source (size, time span, format), ana-
lysis framework (motivation for analyzed variables), and
trend analysis methodology.

3.1. System descriptions

In this work, the results of characterizing the workload
of three HPC systems are presented. In this section, we
describe the characteristics of these systems to enable the
discussion about the applicability of our results to other
systems.

3.1.1. System characteristics
NERSC is a HPC center at Lawrence Berkeley Na-

tional Lab, that has the mission to provide computing in-
frastructure and tools for scientists performing research
of relevance to the DOE (Department of Energy). Our
work analyzes the various years of real jobs from three of
NERSC’s systems: Carver, Hopper, and Edison. These
three systems were selected because their di↵erent hard-
ware characteristics and origin in the timeline of HPC sys-
tems evolution, which can be observed in Table 1. Carver
is a terascale IBM iDataPlex Linux cluster [13] deployed in
April 2010. Its configuration is the closest to commodity
hardware servers of the three systems and it is supported
by an Infiniband interconnect. Hopper and Edison are spe-
cialized Cray supercomputers with custom interconnects
[14]. Hopper is a petascale Cray XE system, based on
AMD processors and a Gemini interconnect, and deployed
in 2010. Edison is a newer, more power e�cient petascale
Cray XC30, constructed with Intel processors supported
by a Aries interconnect and deployed in 2014. Thus, these
systems allow us to capture the workload characteristics of
high-end clusters and supercomputers, belonging to di↵e-
rent HPC system generations and optimized for slightly
di↵erent applications.

On the resource management side, all three systems use
the Moab scheduler [15, 13, 16] running atop the Torque
resource manager [17]. Edison’s workload manager was
replaced by Slurm at the end of 2015.

3

37

3.1.2. Workload
Over 5000 users and 700 distinct projects use NERSC

resources [18, 12]. The workload is composed of applica-
tions from various scientific fields like Fusion, Chemistry,
Material Science, Climate Research, Lattice Gauge The-
ory, Accelerator Physics, Astrophysics, Life Sciences, and
Nuclear Physics.

In addition to serving typical MPI workloads, Carver
provides a serial queue [19]. The serial queue allows users
to submit and execute jobs with a very low degree of paral-
lelism (i.e., one single core). Carver has 80 compute nodes
allocated to serial jobs. Serial queues were added to Ho-
pper and Edison in late 2014. The serial queue on Edison
and Hopper is configured via a super-job run under the
special Cluster Compatibility Mode (CCM). There are a
total of 15 compute nodes each allocated to run serial jobs
on Edison and on Hopper. Serial queues contain jobs run-
ning long time (limited to 48 hours) on a single core. The
purpose of the serial queue is to increase resource utiliza-
tion density. It serves packs jobs on the same node that
do not benefit from parallelism and which performance is
either not critical or rarely a↵ected by resource sharing.

The conclusions of this work are only based on the job
related information of the workload. Run time characte-
ristics of applications, execution schema or other variables
were not considered or analyzed in this study.

3.1.3. Scheduler characteristics
The configuration of a system scheduler has an impact

on the system performance (i.e., utilization, wait time)
and the workload shape: e.g., jobs allocation sizes will
cluster around the allowed values in submission queues. In
this subsection, we present the configuration of the analyze
systems scheduler to provide context for later analyses.

First, node sharing is only enabled for nodes executing
jobs from the serial queue to avoid performance degrada-
tion [20]. In order to keep the same baseline, we consider
cores as the degree of parallelism unit in our analysis.

In all systems there is a distinction between the queues
chosen at submission time (Torque) and the queues that
the scheduler use for priority calculation (Moab). Users
submit jobs to the Torque submission queues. Moab has
its own queue configuration - the execution queues. Torque
translates the queue into Moab’s execution queues and
passes the job to the scheduler. Submission queues can
be mapped to a single or multiple execution queues. For
example, jobs of up to 10 hours of runtime maybe sub-
mitted to the same submission queue, to be sorted into
two execution queues with ranges of [0, 5), [5, 10) runtime
hours. Table 2 shows queue properties that govern the
scheduling decisions for our three systems. The properties
are explained below:
Maximum wall clock time (Torque): Each queue has
an upper limit for a job’s estimated wall clock time speci-
fied by the user at submission time. If a job’s estimated
wall clock time is longer than this limit, submission fails. If

a job runs longer than the user estimated wall clock time,
the job is terminated.
Number of cores (Torque): Each queue has a pre-
defined minimum and maximum limit of a job’s requested
number of cores. Submission of a job allocating a number
of cores outside this range will fail.
Queue priority (P) (Moab): Each queue in the system
is assigned a priority (represented as an integer where a
higher number represent a higher priority).
Eligible jobs limit per user (E) (Moab): Only the
first E jobs of the same user in the same execution queue
are eligible for scheduling. This can a↵ect a job’s wait
time. For example, if a user would submit 25 jobs to
the serial queue on Carver, only the first 20 jobs will be
considered for scheduling. The last five jobs will only be
considered to be scheduled after the first five jobs have
finished. This can impact wait times for the jobs where
the last five jobs may have significantly higher wait times
than the other 20 jobs.

The execution queues do not exist as separate data
structures inside Moab. All jobs are stored in a single
queue. When a job is passed to Moab, it is inserted in
its job waiting queue with a job priority of zero. In every
scheduling pass, the job priority is recalculated by adding
a value, which depends on the associated execution queue
priority. If a job is in a higher priority queue, the job prior-
ity will grow faster and it will be eligible for execution more
quickly. The analysis of the impact of the queues’ charac-
teristics on jobs wait time is presented in Section 6.2.

3.1.4. Queues configuration
The analyzed system’s scheduler re-calculates the jobs

priority depending on the queue they are submitted to.
Since the configuration of such queues a↵ect the overall
system behavior, we present their configuration in detail
in this section.

Table 2 presents the execution queue configuration of
Edison, Hopper, and Carver used in the analysis. It covers
each queue’s job maximum run time (Wall Clock Time),
job allowed allocations in numbers of cores (Cores), num-
ber of eligible jobs allowed to be scheduled simultaneously
(E), and the priority of the queue (P). This information
allows us to understand the reasons for di↵erent wait time
behaviors between queues.

The batch queue policies influence the jobs execution
order. These policies changed slightly through the studied
period. To simplify the analysis, we used the settings that
were most common through the period of study. Also,
some queues were filtered out of this study as they repres-
ented too little of the workload, or were related to system
maintenance or tests.

Edison and Hopper map their queues on a single set of
resources (independent for each system). However, Carver
queues are mapped in sets that partly overlap: general
set (1080 nodes), matgen set (64 nodes, subset of the gen-
eral set), xlmem set (two nodes with large memory capa-
city), and serial set (80 nodes, not overlapping). Di↵erent

4

38

Hopper Wall Cores E. P. Edison Wall Cores E. P. Carver Wall Cores E. P.
Queues clock Queues clock Queues clock
bigmem 24h. 1-8,856 1 0 matgen low Unk 1-256 66 0
ccm int 30m. 1-12,288 2 1 cm int 30m. 1-12,288 2 1 matgen prior Unk 1-256 66 10
ccm queue 96h. 1-12,288 16 1 ccm queue 96h. 1-16,368 16 0 matgen reg Unk 1-256 66 1
debug 30m. 1-12,288 2 1 debug 30m. 1-12,288 2 1 debug 30m. 1-256 1 2
low 48h. 1-16,392 6 -3 low 48h. 1-16,392 6 -3 low 24h. 1-256 3 -2
premium 48h. 1-49,152 1 2 premium 36h. 1-49,152 1 2 xlmem sm 72h. 8 1 0
reg 1hour 1h. Unk. 8 0 reg 1hour 1h. Unk. 16 0 xlmem lg 72h. 32 2 0
reg big 36h. 49,153-

98,304
2 1 reg big 36h. 49,153-

98,304
2 1 reg big 24h. 257-512 1 0

reg long 96h. 1-1,536 4 0 reg long 168h. 1-128 1 0
reg med 36h. 16,369-

49,152
4 1 reg med 36h. 16,369-

49,152
8 1 reg med 36h. 129-256 2 0

reg short 6h. 1-16,368 16 0 reg short 6h. 1-16,368 24 0 reg short 4h. 1-128 4 0
reg small 48h. 1-16,368 16 0 reg small 48h. 1-16,368 24 0 reg small 48h. 1-128 3 0
reg xbig 12h. 98,305- 2 0 reg xbig 12h. 98,305- 2 1 reg xlong 504h. 1-32 1 0

146,400 131,088 interactive 30m. 1-64 1 2
thruput 168h. 1-48 500 0 killable 48h. 1-16,368 8 0 serial 48h. 1 20 -

Table 2: Hopper, Edison, and Carver queue characteristics. Jobs have to be within certain limits to be accepted in a queue: requested runtime
upper limit (wall clock time) and accepted number cores range (Cores). Eligibility (E.): Maximum number of jobs from the same user in the
same queue which are considered in jobs priority recalculation. Priority (P.): Queue priority.

queues have access to di↵erent sets: matgen queue jobs can
only run on matgen resources (but jobs from other queues
can use them when they are available). xlmem nodes can
be only used by xlmem jobs. This implies that di↵erent
queues may not present the same ratio of job core-hours
requested over resources’ core-hours available. How this
di↵erence may impact jobs wait time is studied in Sec-
tion 6.2.

The serial queue jobs allocate one core per job and are
executed on shared nodes (more than one job per node).
Also, this queue has exclusive access to the serial resource
set so it does not compete with any other queue. Thus,
wait times of the serial queue should not be compared
with other queues.

3.2. Data Source

All workload analysis is performed on the job sum-
mary entries from the systems’ Torque logs. The data in-
cludes 1 year and 1,357,366 jobs for Edison, 4.5 years and
4,326,870 jobs for Hopper, and 4.5 years and 9,508,054
jobs for Carver. The raw data size is 45 GB, which, after
filtering and parsing, is reduced to 6 GB of net data.

3.3. Analysis Framework

The analysis framework is composed of a set of scripts
that express the data pipeline to process the log data.
The developed data pipeline is divided into three parts.
The first is the data extractor, which retrieves the log
files from the NERSC repository, parses them, eliminates
invalid entries and inserts them in a MySQL database.
The second component is a Python API to insert, manip-
ulate, and retrieve the data from a MySQL database. The
MySQL database is indexed to facilitate the queries based
on multiple fields. The third component is the analysis
toolkit. It implements the logic to retrieve, analyze, and

visualize the data for all the analyses. A specific plotting
library was developed to support the graph generation.
The code consists of 14K Python lines using the scientific
libraries SciPy and NumPy combined with the plotting
library MatPlotLib [21]. All analyses were run on an Intel
i7 Quad core 8 GB RAM desktop computer. The database
is hosted on a department server at Berkeley Lab.

Our analysis focuses on understanding the variables of
the workload from the user (i.e., job) and system (i.e.,
queues and performance) perspectives.

The job perspective includes:
Job size: includes wall clock time, degree of parallelism,
and resulting compute time allocation. These parameters
define the system boundaries’ requirements and job gra-
nularity.
Wall clock time accuracy: represents how accurate are
the user estimations on the jobs runtime. The variable
measures the quality of the information used by the sche-
duler in its job planning.
Inter-arrival time: models the time between the sub-
mission of two jobs. It represents the load to be managed
by the scheduler and the overall wait time. For instance,
for the same job sizes, a smaller inter-arrival time repres-
ents a larger job load.
Job diversity: measures how di↵erent the geometries of
jobs in the workload are. It includes the analysis of dom-
inant job geometries in the workload.

The queues and their configuration represent the map-
ping of the prioritization policies to the workload job mix.
The study includes:
Queue significance: represents the impact of each queue
on the overall system. It allows to understand how the
properties of each queue contributes to the overall system
behavior according to their importance.
Queue job diversity: analyzes the how self similar are

5

39

the jobs within each queue in terms of geometry. This ana-
lysis is relevant because execution queues allow the system
scheduler to prioritize jobs depending on their geometry.
However, the existing queues might not represent the most
significant types of jobs (by geometry) present in the job
mix. This analysis is focused on two objectives: under-
standing the diversity of the jobs across the entire work-
load, and similarity of jobs contained in the same queues.

The performance perspective covers the system utiliz-
ation and job wait time. Additionally, the job wait time
is studied from system, queue, and job geometry points
of view. This study allows us to understand the how the
e↵ectiveness of the priorities for di↵erent job geometries in
di↵erent queues might be a↵ected by job diversity in the
queues.

3.4. Trend analysis

In this work, the workload of Carver and Hopper was
analyzed in detail for each year of their lifetime. To sim-
plify interpreation, the detailed analysis is only presented
for 2014. However, the relevant results of all years were
aggregated in the trend analysis, presenting the evolution
of Carver and Hopper workloads through their lifetime.
Edison’s trend analysis was not performed because not
enough workload data was available.

In this work, we focus on understanding the evolution
of the system’s workload, overall performance, and user
behavior. As explained in Section 3.3, workload trend cov-
ers the evolution of the job geometry (wall clock time and
degree of parallelism). Overall performance is analyzed
through the evolution of job wait time. User behavior is
analyzed by observing the evolution of the wall clock time
accuracy.

Finally, since the trend is performed by analyzing the
workload in sequential time periods and aggregating the
results over a time line, an adequate period had to be
chosen. The size of the workload periods is calculated by
detecting repeating user patters in the workloads through
Fourier transform analysis on the number of tasks submit-
ted per hour [22]. Results of such analysis are described in
Section 7.1 and the dominant detected cycle was one year.

4. Job Characterization

In this section we present the workload analysis of the
jobs of Edison, Hooper, and Carver in 2014. This analysis
is performed with special attention to job geometry, user
submission patterns, and job diversity on all three systems.

4.1. Job geometry

Job’s geometry analysis allows to observe the patterns
in jobs resource allocation and analyze the job mix that the
scheduler manages. All variables are analyzed by calculat-
ing their value distribution and consequence Cumulative
Distribution Function (CDF). This allows to understand

Job Distribution Edison Hopper Carver
%Jobs Wall Clock < 2 h. 88% 86% 87%
%Jobs Width < 240 codes 69% 75% 99%
%Jobs Width 1 Node 39% 37% 92%
%Jobs Alloc. 1 core-h. 19% 26% 77%
%Jobs Alloc. � 1K core-h. 7% 8% ⇠8%

Table 3: Detailed job characteristics distribution analysis

if jobs are dominantly small or large, if theirs sizes con-
centrate around certain values, or if the job mix includes
enough jobs of smaller sizes to allows high system utiliza-
tion. We follow to present the results for each of the job
variables.
Job wall clock time. Figure 1a, shows the Cumulative
Distribution Function (CDF) of the job wall clock time
for the three systems in 2014. In the case of Hopper, we
observe jobs running up to 160 hours, with a high con-
centration running under two hours. Table 3 shows an
overview of the job characteristics’ distribution analysis.
It shows that 86-88% of the jobs on all three systems run
for less than two hours. For Carver, a large number of the
jobs have a wall clock time well under one hour; in fact,
60% of the jobs run for less than 13 minutes.

Additionally, all three CDFs present steep slopes around
30 minutes and 6, 12, 24, and 36 hours (better observed
in a non-log scale version of the graphs), numbers that
are similar to the queues’ configured wall clock time limit.
These limits are similar across the three machines (more
details in Table 2).
Cores per job. Figure 1b presents the distribution of
cores allocated to jobs on the three systems. It represents
the number of cores requested and allocated to a certain
job, and does not include any information on the actual
usage of the cores. On Hopper and Edison, requests for a
single job range from 24 (1 node) to over 100,000 cores (i.e.
close to the full capacity of the systems). A small number
of cores are requested for Hopper’s jobs: 75% under 240
cores (10 nodes), and 37% of all jobs run on a single node
(Table 3). Edison presents a similar pattern with 69%
of the jobs running on less than 240 cores and 39% on a
single node. Carver shows a di↵erent trend from Edison
and Hopper. On Carver, many jobs run on a small number
of cores: 99% run on 240 cores or less, and 92% of all jobs
run on a single node.
Allocated core-hours per job. Figure 1c shows core-
hours allocated for the jobs in the system. The figure
shows that Hopper and Edison core-hour allocations are
similar. Jobs on Hopper and Edison are significantly larger
than those on Carver: 99% of Carver jobs individually
consume less than one core-hour, in comparison with 42%
on Edison and 46% on Hopper. On the other extreme, we
can observe that almost 10% of Edison and Hopper jobs
individually consume more than 1,000 core-hours.

4.2. Job’s characteristics

In this section we study other variables of the jobs that
depend on other external agents. This includes the user’s

6

40

(a) Wall clock Time (h.) (b) Cores allocated (c) Core-hours

Figure 1: Job geometry characterization on Hopper, Edison, and Carver. a) Significant percentage (Edison: 87%, Hopper: 82%,
Carver: 87%) of the jobs run for 2h or less. b) 69% of Edison, 75% of Hopper and 99% of Carver jobs allocate 240 cores or less.
c) Carver’s jobs allocate significantly fewer core-hours.

(a) Inter-arrival time (s.) (b) Wall clock time accuracy (c) Wait time (h.)

Figure 2: Job characterization on Hopper, Edison, and Carver. a) Carver receives significantly more job submissions per time unit
than the other systems: 40% of jobs are followed by another job within one second. b) 11% of Edison and 10% of Hopper jobs
run over the requested time. Carver: 92% of the jobs run under 50% of requested wall clock time. c) Jobs that wait less than 3h
to be executed: Edison (67%), Hopper (60%), Carver (79%).

submission pattern (inter-arrival time and wall clock time
accuracy) and job’s overall wait time (which depends on
the scheduler configuration). A more detailed analysis of
the job’s wait time is presented in Section 6.2.
Inter-arrival time. Figure 2a represents the CDF for the
inter-arrival times on Edison, Hopper, and Carver. The
inter-arrival time measures the time elapsed between the
arrival of consecutive jobs in a system, which can a↵ect
the granularity of scheduling and help to understand the
load on the schedulers.

Edison and Hopper have very similar distributions: 90%
of the jobs have inter-arrival times under two minutes. The
remaining 10% are distributed in the 1500-2000 seconds
(25-33 minutes) range. On the other hand, more than
95% of Carver’s inter-arrival times are under 25 seconds.
As the CDFs of the three systems are compared, Carver’s
inter-arrival times are shorter than those for Edison and
Hopper. Thus, when compared to Edison and Hopper, we
observe that more jobs are submitted to Carver queues
during the studied time period.
Wall clock time accuracy. For each job we study the
di↵erence between the actual and the requested wall clock
times. The accuracy is defined as W

W r , where W is the

actual wall clock time of a job and Wr is the wall clock
time that the user requested for the job. The accuracy will
be close to one when the estimation is good, and closer to
zero when the job running time is overestimated. If the
job runs over the requested time, the job will get preemp-
ted. However, this is caught during the next scheduling
pass. Thus, we see values over one when jobs run over the
estimated time.

As discussed in Section 2.2, the wall clock time ac-
curacy a↵ects the backfilling decision quality. Figure 2b
presents the distribution of the wall clock time accuracy
values for the three systems studied. The initial steep slope
of the Carver CDF shows that it executes many jobs that
use much less than the requested wall clock time. Edison
and Hopper have a more linear CDF for values between
zero and close to one. However, in all systems we observe
jobs with an accuracy slightly above one (as they exceed
their allocated run time and are terminated). We see that
the percentage of jobs that run out of wall clock time is
higher on Edison (11%) and Hopper (10%) than on Carver
(2%). Approximately 60% of Edison and 66% of Hopper
jobs run 50% or less of the requested time. On Carver,
around 93% of the jobs run 50% or less of the requested

41

time.
Wait time. Figure 2c presents the distribution of job
wait times under 24 hours (jobs with longer wait times are
not included in this graph). The figure shows that Hopper
has more jobs with longer wait times, followed by Edison
and Carver. Considering all the jobs in the system, we see
that 61% of Hopper jobs, 67% of Edison jobs, and 80%
of Carver jobs have a wait time of less than three hours.
Further analysis of the wait time values is presented in
Section 6.2.

4.3. Job diversity

The job diversity analysis is based on a machine learn-
ing technique and extends a previous work about job group-
ing within clusters [11]. We construct job geometry tuples
that contain job wall clock time and number of cores allo-
cated. Before performing analysis, the tuples are norma-
lized (whiten [23]) to reduce the e↵ect of the value mag-
nitudes on the clustering process. In the analysis, the tar-
get is to find the smallest number of k-means clusters [24]
among the job geometry tuples where the variation coe�-
cient (standard deviation divided by the mean) is at most
1.1. If jobs are similar, the method will group them in a
small number of clusters. Jobs in more diverse workloads
are grouped in larger numbers of clusters.

When invoked, k -means produces k clusters from an in-
put dataset and a list of k centroids used as search starting
points. However, k -means produce k clusters, not the min-
imum possible, and does not guarantee that the clusters
are not disperse. As a consequence, k -means must be in-
voked with di↵erent k sizes and di↵erent start centroids
to obtain a minimum possible number of non dispersed
clusters. Figure 3 illustrates the algorithm that searches
for the minimum clusters in the job geometries, by trying
di↵erent k values and random centroid points.

It starts by whitening the input job tuples (line 5) to
reduce the e↵ect of the value sizes on the clustering. Then,
the process to find the minimum number of k -means min-
imum cluster search is repeated 10 times with di↵erent
starting centroids. In each trial (lines 7-37), the process
starts by producing an initial random centroid set of two
points. Then, starting at k = 2 the algorithm tries to
find k non dispersed clusters, increasing the value of k
in each unsuccessful trial (lines 10-37). For each k, k
clusters are produced (line 14) and considered disperse
if their variation coe�cient is larger than 1.1 (lines 15-
23). Each disperse cluster is divided, i.e., two centroids
close to the cluster centroid are produced and added to
the obtained cluster lists, increasing the resulting k size
in one (line 21). In summary, the obtained clusters are
reviewed, if they are not too dispersed, they are left as
they are, otherwise they are split, increasing k in one per
cluster split. Then, the search is repeated with the new
centroids as starting points. The process is repeated until
non dispersed clusters are found (lines 26, 27) or the found
k is larger than the minimum size of previously observed
non dispersed clusters (lines 11,12). The algorithm does

Figure 3: Minimum number of k -means cluster search algorithm for
a list of job geometries.

1: (repetitions, trialsSmallerK) (10, 10)
2: maxCulsterV ar 1.1
3: minKFound �1
4: (finalClust, finalCent) (None,None)
5: normJobs whiten(allJobs)
6: for i 1, repetitions do
7: seed = genRandomSeed()
8: k 2
9: cent genRandomCentroids(k, seed)

10: for j 1, trialsSmallerK do
11: if k >= minKFound and minKFound 6= �1 then
12: break
13: end if
14: Clust, cent kMeans(normJobs, cent)
15: cvList calcCV ForClusters(Clust, cent)
16: newCentroids []
17: for l 0, len(cvList) do
18: if cvList[l] <= maxCulsterV ar then
19: newCentroids.append(cent[i])
20: else
21: newCentroids.append(splitCentInTwo(cent[i]))
22: end if
23: end for
24: if len(cent) = len(newCentriods) then
25: (finalClust, finalCent) (clust, cent)
26: if minKFound = len(finalCent) then
27: break
28: end if
29: if minKFound = �1 then
30: minKFound len(finalCent)
31: else
32: minKFound min(k, len(finalCent))
33: end if
34: end if
35: cent newCentroids

36: k len(newCentroids)
37: end for
38: end for
39: return finalClust, finalCent

not guarantee that the obtained number of clusters is the
minimum possible, however it produces a local minimum.

Figure 4 shows the results of the clustering search me-
thod for Edison’s jobs in 2014. This graph is a scatter plot
of the jobs where each job is represented by a colored dot.
The x -coordinate corresponds to the job’s wall clock time
and the y-coordinate to the number of cores allocated to
the job. Note that the y-axis is in logarithmic scale. The
execution queue of the job is identified by the color of the
dot. The clusters’ centroids are represented by black dots,
while the color boxes are the boundary jobs observed in
each cluster (minimum and maximum wall clock time and
number of cores).

Table 5 shows the results of the clustering. Eight clusters
were found for Carver, 11 for Edison and 12 for Hopper.
This implies that Carver has a more homogeneous job set
compared to Edison and Hopper As noted in the previous
section, 70% of Carver jobs come from the serial queue,

8

42

Figure 4: Result of the job clustering method for Edison 2014 with
8 clusters. Jobs are mapped on queues and clusters: Each dot is
a job and dot color indicates the queue. Black dots are cluster
centroids and color boxes are the surrounding jobs belonging to the
same cluster. Clusters are sets of jobs with similar geometry.

defined for single core jobs with long run times.

5. Queue Characterization

In the analyzed systems, job priorities are calculated
depending on the queues that they are assigned to, also
di↵erent job geometries were limited to be submitted to
certain queues. As a consequence, queue configuration
has an e↵ect on how user submit jobs and how job pri-
orities are distributed. In this section, we analyze the re-
lationship between queue configuration, job geometry, and
submission behavior.

5.1. Queue significance

The first step in analyzing the queue configuration and
behavior is to understand the relevance of each queue in
the system. For this, Figure 5 shows the normalized view
of the number of jobs and core-hours per execution queue
on Edison, Hopper, and Carver. The interpretation of this
data is based on the configuration presented in Table 2.

On Hopper, the debug queue contains approximately
20% of the total jobs. The debug queue is typically used
for testing and has a wall clock time limit of 30 minutes.
The queue reg small contains 30% of the jobs and approx-
imately 56% core-hours. The queue reg med presents a
lower job count (< 5%) and core-hours (⇠ 15%). The
thruput queue admits 168 hours jobs and multiple submis-
sions from the same user (600). However, its contribution
to the total system utilization is less than 10% of jobs and
2% of core-hours.

Edison is very similar to Hopper, with the reg small
queue having ⇠ 40% of the jobs, and ⇠ 40% of the core-
hours contributed by the debug and reg 1h queues.

Carver shows a di↵erent pattern. The serial queue
contains more than 70% of the jobs, which consumed less

Figure 5: Normalized view of the number of jobs and core-hours per
queue in Edison, Hopper, and Carver.

than 10% of core hours. This percentage matches with the
fact that this queue has exclusive access to 80 out of 1,180
total nodes (⇠ 7%) that are used for computation. The
reg small queue (⇠ 40%) and matgen reg (⇠ 15%) account
for the majority of the remaining core-hour usage.

5.2. Queue Diversity

The minimum number of clusters and their boundaries
provide an overall view on the job diversity, and a pos-
sible recommendation for queue configuration. However,
it gives no information about the job mix for a queue, i.e.
how similar are the jobs in each queue. Thus, we define the
queue homogeneity index as a new metric to compare the
diversity of the jobs in a queue. After the clustering pro-
cess, it is possible to identify each job’s original cluster.
Since jobs from di↵erent clusters are significantly di↵e-
rent, a queue which jobs largely map on a single cluster
will contain more homogeneous jobs than a queue whose
jobs map to many clusters. The queue homogeneity index
is the percentage of queue jobs that are mapped to the
queue’s dominant cluster, i.e. the cluster to which most
jobs of the queue belong. For example, a queue maps jobs
to three clusters with the following shares: 20%, 30%, and
50%. The cluster that contributes the most has 50% of
the jobs and, as consequence, the queue homogeneity in-
dex is 50%. A higher index value indicates that many jobs
are mapped to the same cluster and are thus geometrically
similar to each other, while a lower index value means that
the queue’s jobs are more heterogeneous.

Table 5 present the queue homogeneity indices for the
all the queues in Edison, Hopper, and Carver. This data
allows to identify which queues contain more diverse job
mixes and are candidate to be reviewed and, if needed,
divided into smaller better defined queues. In Edison,
reg big, reg med, and reg big are the more homogeneous

43

Edison 11 c. Hopper 12 c. Carver 8 c.
Queue /1 Queue /1 Queue /1
ccm queue 0.46 bigmem 0.31 debug 0.32
debug 0.63 ccm queue 0.45 interactive 0.35
killable 0.40 debug 0.70 low 0.99
low 0.53 interactive 0.85 matgen low 0.62
premium 0.27 killable 0.45 matgen prior 0.66
reg 1hour 0.71 low 0.59 matgen reg 0.68
reg big 0.96 premium 0.40 reg big 0.70
reg med 0.98 reg 1hour 0.69 reg long 0.31
reg short 0.42 reg big 0.66 reg med 0.82
reg small 0.42 reg long 0.50 reg short 0.62
reg xbig 1.00 reg med 0.86 reg small 0.26

reg short 0.39 reg xlong 0.55
reg small 0.36 serial 0.87
reg xbig 1.00 usplanck 0.54
thruput 0.77 xlmem lg 0.24

xlmem sm 0.58

Table 4: Queue homogeneity indices for each machine: share of num-
ber of jobs belonging to its dominant cluster. In light green queues
with indices in (0.50, 0.75] interval, in darker green queues with in-
dices (0.75, 1.00].

queues while premium is the more diverse (0.27). In in-
termediate values (close to 0.50), reg small appears to be
diverse (0.42) and since its impact of the system is large
(40% of jobs and core-hours), it is a good candidate of fur-
ther study for division. Among Hopper’s queues reg small
is quite diverse (0.36) and significant in the system (50%
of jobs and core-hours), becoming a good candidate for
revision. In Carver, reg small (0.26) and significant (40%
of core-hours) and should also reviewed.

Systems have di↵erent queue configurations and, in or-
der to compare di↵erent systems with di↵erent workloads,
a global metric is established. It aggregates the queue ho-
mogeneity index of all the queues by taking into account
the queues’ importance relative to the entire workload in
the system.

Figure 5 presents two criteria for the impact of a queue
on the system: number of jobs contained and amount of
core-hours contributed. The former is useful to understand
scheduler behavior, while the latter represents the fraction
of the machine time the queue occupies. Missing one as-
pect of the system may give an incomplete picture, so we
define two more metrics:
Job homogeneity index is calculated as a linear com-
bination of the queue’s homogeneity index. The coe�-
cients are the share of jobs contained by the correspond-
ing queue. For example, Queue1 has a homogeneity index
of 0.6 and contributes 30% of the system’s jobs. Queue2
has a homogeneity index of 0.4 and contributes 70% of the
jobs. The Job homogeneity index is thus calculated as:
0.6 · 0.3 + 0.4 · 0.7 = 0.46
Time homogeneity index is calculated as a linear com-
bination of a queue’s homogeneity, but in the time dimen-
sion. The coe�cients are the shares of core-hours contrib-
uted to the system by the corresponding queue. In the
example of Queue1 and Queue2: Queue1 contributes 30%

Edison Hopper Carver
Clusters 11 12 8
Job homogeneity idx. 0.51 0.57 0.82
Time homogeneity idx. 0.64 0.49 0.51

Table 5: Queue analysis results: for each machine, minimum number
of k-mean clusters discovered in the jobs and homogeneity indices.

of the system’s jobs, and represents 80% of the core-hours
of the system. Queue2 contributes 70% of the jobs that
represent 20% of the system’s core-hours. The Time homo-
geneity index is thus calculated as: 0.6·0.8+0.4·0.2 = 0.56.

We understand that larger indices imply that jobs in
queues are more homogeneous, and policies are able to do
more precise job prioritization for certain types of jobs. A
lower index implies the existence of queues that contain
a diverse job mix, which probably should be divided in
more narrowly defined queues. The queue homogeneity
index defined above can be used to determine what and
how queues should be modified. These indices are not
absolute measurements, and can only be used to compare
similar systems (like the ones studied) or the same system
during times.

Table 5 shows the calculated homogeneity indices for
the three NERSC systems. The job homogeneity index
shows that Carver is the system in which queues contain a
reasonably uniform job mix. The time homogeneity index
produces a di↵erent ordering: Edison, Carver, Hopper.
This implies that the uniform queues on Carver have many
jobs, but they are very small in terms of the total number
of core-hours. On Hopper the uniform queues contains
fewer jobs, but they contribute a significant part of the
system’s core-hours.

This analysis can be used to improve the job sort-
ing across queues. From the point of view of core-hours,
Edison has the best sorted queues. The queue reg small
is the largest contributor in terms of core-hours and jobs,
however, only 42% of the queue jobs are mapped to the
same cluster, implying a high diversity within the queue.
The reg small queue allows jobs up to 48 hours long and
between 1 and 16,368 cores in size. Dividing this queue
into subqueues with sub ranges of wall clock times or cores
could have a positive impact on the time homogeneity in-
dex of Edison, and support improved job prioritization on
the system.

6. Performance Characterization

In this section we study the performance of the systems
from the perspectives of both resource providers (utiliza-
tion) and users (wait time). This study includes a more
detailed analysis on the jobs’ wait time with a focus on its
relationship with queue organization and job diversity.

6.1. Utilization

Facilities such as NERSC report the utilization of their
resources periodically. The 2014 NERSC report calculates

10

44

Figure 6: Job wait time median per queue depending on the requested cores. Aggregated on top: priority per queue, median of the wall clock
time of queue jobs, jobs per queue (normalized), core-hours per queue (normalized).

System Edison Hopper Carver
TSU 0.91 0.90 N/A
tTSU 0.87 0.80 0.88

Table 6: Total System Utilization (TSU) and theoretical Total Sys-
tem Utilization (tTSU). tTSU is under TSU since it does not take
into account system maintenance down times.

the Total System Utilization (TSU) of Hopper and Edison
as:

TSU =
core-hours used in period

core-hours available in period
(1)

The available core-hours are calculated subtracting main-
tenance time (full and partial) and other temporal resource
reductions. Down times are tracked manually and the TSU
is calculated for reporting reasons. The available logs for
this analysis do not contain system availability informa-
tion. Thus, we calculate the theoretical Total System Util-
ization (tTSU) as:

tTSU =
core-hours used in period

time period ⇤maximum system capacity
(2)

By definition, tTSU will be less than or equal to TSU.
We present the reported TSU and the tTSU in Table 6.
Carver’s TSU was not available for 2014.

6.2. Job wait time

Previous analysis (Section 4.2) presents a coarse grained
analysis of jobs’ wait time. To understand the performance
of the system, it is important to also understand wait times
relative to job geometry and queue priorities. In this sec-
tion, we detail our wait time distribution analysis, i.e. we
calculate the median wait time of jobs grouped by queues
(and thus corresponding priority) and job geometry. User
wall clock time estimations of the systems are inaccurate

(Section 4.2), as a consequence we use the number of cores
requested as job geometry metric for this analysis.

We present job wait time for the three systems as heat
maps in Figure 6. For each system, queues appear on
the x -axis, ordered by priority. The y-axis represents a
non-linear categorization of the possible numbers of cores
allocated to jobs. Each square contains the wait time me-
dian (in seconds, minutes, hours, or days) for a particular
queue that was allocated the cores specified on the y-axis.
White regions indicate that there were no jobs with the
specific queue and cores combination. A darker tone or
red represents longer wait times (24 hours or longer), and
a lighter tone or yellow represents shorter wait times. The
priority of each queue is specified above the heat map and
below the bar graph. The bar chart on top shows the num-
ber of jobs and core-hours contributed by each queue to
each system.

In all systems, we observe that the graph is darker at
the top left corner and lighter at the bottom right. Thus,
jobs in the same queue with a larger degree of parallelism
have longer wait times. The e↵ect follows from the fact
that the wider jobs are harder to fit during scheduling.
Also, jobs with similar number of cores have shorter wait
times in queues with higher priorities. While these capture
the general trend, we look more closely at the anomalies
in the heat map.

On Hopper, the low queue has the lowest priority (�3)
and longer wait times than most of the other queues. The
queues with priority zero, reg 1h, reg xbig, and reg short,
present the expected behavior: longer wait times than
the ones with priority one and shorter than the one with
�3. The bigmem, reg long, reg small, and thruput queues,
present wait times significantly higher. The big mem queue
is the gateway for the nodes with more memory (384 large
memory nodes vs. 6,000 regular nodes). The jobs in this
queue may be experiencing higher wait times because they

45

compete to use a smaller resource set. The reg long and
thruput queues contain longer jobs than the rest with the
same priority (also much longer than the ones in low), and
thus might not be able to take advantage of backfilling. Fi-
nally, the reg small long wait times may be related to its
large contribution of jobs and core-hours. The queues with
higher priorities than zero show shorter wait times.

Wait time for jobs allocating di↵erent number of cores
but in the same queue presented unexpected values (i.e.
longer wait times for larger number of cores allocated). In
some cases it could be related to the jobs’ wall clock time,
as is the case for the big mem queue. Its wait time for the
64 to 511 cores range is two days, while between 512 to
1023 cores is seven hours. We analyzed the median of wall
clock times in those ranges, obtaining one day and three
hours respectively. The jobs allocating 64 to 511 cores
were probably harder to backfill due to their longer wall
clock times, increasing the wait time.

Edison exhibits a similar behavior to Hopper. The
queues killable and ccm queue have longer wait times, be-
cause their job’s run-time is longer than the jobs in other
queues with similar or lower priority. The reg small queue
has the maximum jobs and core-hours used on Edison, res-
ulting in possibly longer wait times of its jobs. The jobs
with higher priorities behave as expected, showing shorter
wait times.

Carver displays di↵erent trends compared to Hopper
and Edison. The serial queue has exclusive resources and a
median wait time of five minutes. Thematgen queues has a
pool of resources, but those might be used by other queues.
The queue also has a high job count, and thus higher wait
times than queues with lower priority. The xlmem queues
are similar to Hopper’s bigmem, and meant to serve jobs
with large memory requirements. However, their resource
assignment is di↵erent: On Hopper, bigmem jobs can only
be executed on nodes with large memory capacity, but
these nodes can also execute jobs from other queues. In the
case of Carver, only the jobs from the xlmem queues can be
run in the special nodes. This exclusive access, combined
with xlmem’s low job count and core-hour contribution,
explains why these queues’ median job wait time is under
four minutes.

Three queues (reg big, reg long, reg xlong) have prior-
ity zero and longer wait times than the other queues. The
reg small queue jobs consume more core-hours than any
other queue (apart from serial), which may be the reason
for the long wait times in this queue. Finally, the queues
with higher priorities behave as expected.

In general we observed that queues that did not display
expected queue wait time patterns had low homogeneity
indices (under 60%). In particular, the queues on Hopper
with such indexes should be further studied. More predict-
able wait times could be possible by dividing these queues
according to the observed job clusters.

Figure 7: Fourier decomposition of the series of the jobs submitted
per hour for Edison, Hopper, and Carver to detect dominant sub-
mission cycle. Note the logarithmic scale for the frequencies. Most
powerful frequencies highlighted with a black arrow and its corres-
ponding period.

7. Trend Analysis

After analyzing the system behavior during a particu-
lar period of time, this section presents a similar analysis
but performed over the lifetime (Jan 2010 to June 2014)
for Hopper and Carver. The purpose is to observe if there
is any clear evolution pattern.

7.1. Time Patterns and analysis granularity

Choosing a time period to slice the data was the first
step of this analysis. A Fourier transform analysis was per-
formed on the number of tasks submitted per hour, since
this analysis allows us to detect cycles in the user behavior
[22]. The result can be observed in Figure 7: Black arrows
point to the most powerful frequencies correspond to the
periods of 1 day, 1 week, 3 months, 6 months. This data
matches human period times (days, working weeks). Each
project has a number of core-hours to be used in a year,
divided in 4 allocation quarters in which the project has
to consume (or forfeit) the corresponding allocated time.
The strong pattern around the allocation year led us to
choose one year as the trend analysis period time.

7.2. Job geometry

The evolution of the first job geometry variable is presen-
ted in Figure 8 as a box plot of job wall clock time for
each system in each year. Hopper shows a significantly
low wall clock time median in 2010 (< 1 minute), which
might be related to the fact that it was a smaller testbed
system that year. In 2011, the median increased to ⇠ 5
minutes and subsequently increased to ⇠ 12 minutes by
2014. Carver shows a di↵erent trend: the median, up-
per and lower quartile decrease e↵ectively over the period
studied. The median decreased from ⇠ 20 minutes (2010)
to ⇠ 6 minutes (2014). However, there is some variation

46

Figure 8: Job wall clock time for each each workload year. Trend:
Hopper jobs become longer, Carver jobs shorter. Majority of jobs
under one hour.

Figure 9: Allocated number of cores for each workload year. Trend:
Hopper jobs allocate less cores. In 2011-2013, most Carver jobs used
one core.

from year to year: It is observed that in the first year in
production, Carver ran longer jobs than Hopper, a fact
that slowly changed in 2014 when Hopper ran longer jobs
that Carver. More generally, Hopper presents fairly short
jobs, as the highest upper quartile is around the one hour
value. Carver presents a similar behavior as the upper
quartiles of the last years are under one hour.

The evolution of the width of jobs (number of alloca-
ted cores per job) is shown in Figure 10. For Hopper, the
median decreases from 100 cores (2010) to under 30 cores
(2014). Carver presents an opposite pattern. Except for
2010, the median of the rest of the years is one core, show-
ing the predominance of single core serial jobs. In 2014,
the upper quartile increased to 8 cores.

The core-time i.e., total clock time across all cores was
also studied. In the case of Hopper, it remains nearly the
same through time with a median of ⇠ 20 core-hours and
the upper quartile slightly under 200 core-hours in most
years. In the case of Carver, it slowly decreases from a
median of almost 1 core-hour to ⇠ 6 core minutes (and a

Figure 10: Allocated core-hours for each workload year. Trend: No
changes on Hopper. Carver jobs become smaller.

Figure 11: Jobs’ wait time evolution for each workload year. Trend:
All systems increase wait time. Carver lower wait time in 2011.

last upper quartile of 1 core-hour).
In summary, Hopper jobs (shorter jobs, with a higher

degree of parallelism, bigger than Carver’s) seem to be
showing an increase in their wall clock time. As the e↵ect-
ive job’s core-hours remain the same, they must be using
fewer cores. Carver jobs (longer jobs, lower degree of par-
allelism, fewer core-hours than Hopper’s) have decreasing
wall clock time and use more cores, but the increase is
not su�cient to keep the job’s core hours steady over the
years.

7.3. Job wait time

According to Figure 11, for Hopper, the median of the
wait time is steadily increasing from under 100 seconds
to over 20 minutes (a pattern also present in the upper
and lower quartiles). On Carver, the e↵ective wait time
increases over the four years from ⇠ 10 minutes in 2010 to
⇠ 20 minutes in 2014. However we notice a zigzag pattern
trend in between. In 2011, Carver presented significantly
shorter wait times, which could be attributed to a known
increase of resources in the system. The steady increase of

47

Figure 12: Jobs’ wall clock time accuracy evolution for each workload
year. In all systems wall clock time remains low.

wait time over the lifetime fits with the growth of the user
community of the systems.

7.4. Wall clock time accuracy

The wall clock time accuracy is calculated as
real/estimated wall clock time. The results are shown
in Figure 12. Hopper does not show a clear trend: 2011
to 2013 presents a higher accuracy than 2010 and 2014,
with a median variation between 0.2 and 0.4. For Carver,
the median decreases over time, with significant changes
between 2010 (⇠ 0.25) and 2011 (<0.1). In 2014, the me-
dian is under 0.1 and the last quartile it is under 0.2. For
Carver, there is a clear pattern of worse estimations as the
time proceeds. In general, both systems present very low
values with medians under 0.4.

Wall clock accuracy time does not show a noticeable
pattern beyond the fact that accuracy is low. On Hopper,
50% of all jobs run less than 40% of the estimated time.
Similarly on Carver, 50% of all jobs less than 20% of the
estimated time. These values indicate that the decisions
made by the backfilling algorithms are based on inaccurate
user estimations.

7.5. Job and queue diversity

Following the methodology presented in Section 3.3,
the diversity analysis was performed for each year and sys-
tem under two di↵erent perspectives: how di↵erent are the
jobs overall and how di↵erent are the jobs inside of each
queue. Results can be observed in Figure 13.

Hopper shows lower numbers of clusters over time, de-
creasing from 17 to 12 clusters, implying a decreasing gen-
eral diversity. In the case of Carver, it started with a fairly
simple job mix (7 clusters), had an increase of complexity
in the second year (13 clusters), to go down to the same
number of clusters (7) in the last two years. In all years
Carver presents a more homogeneous job mix in compar-
ison to Hopper.

Figure 13: Workload diversity and in queue homogeneity index:
Overall workload becoming less diverse. Job mix in queues becoming
more uniform.

According to Figure 13, Hopper’s homogeneity job ho-
mogeneity index increased 0.36 to 0.71, while its time ho-
mogeneity index increased from 0.33 to 0.46. Queues with
more jobs contain more self similar jobs in 2014 than in
2010, It is interesting to note that 2012 was higher than in
other years, implying that queues contributing more core-
hours had more self similar jobs. In the case of carver
the trend is similar, job homogeneity index increases from
0.44 (2010) to 0.81 (2014) and time homogeneity index in-
creases from 0.34 (2010) to 0.54 (2011). As we observe
all years, it can be stated that under both criteria Carver
queues job diversity was lower than in Hopper.

Overall, it can be concluded that, as both systems
aged, the jobs submitted by the users evolved to become
more uniform. Additionally, the configured policies have
evolved to build queues that classify better the jobs to
contain more self similar jobs.

8. Results summary and conclusions

In this section, we summarize our results and present
our conclusions on the workload analysis method and res-
ults characterization.

8.1. Summary of results, a year of workload

We present a reference of the current state of the work-
loads of two large scale and one mid scale high performance
systems: We summarize the key results from our detailed
analysis performed on the 2014’s workload from Edison,
Hopper, and Carver. We also compare them with pre-
existing analysis of similar, still older.

• The job wall clock times are short on all three sys-
tems. From 86% to 88% of the jobs run less than 2
hours.

48

• On Edison and Hopper, 37%, 39% of the number of
jobs run on one node and 69%, 75% run on 10 nodes
or less. On Carver, 92% of the jobs run on one node.

• On Carver, 77% of its jobs require one or less core-
hours. Carver jobs use far fewer hours than jobs on
Hopper and Edison.

• Jobs run less than 50% of their requested time: 60%
of Edison jobs, 66% of Hopper’s jobs and 95% of
Carver jobs. Jobs run over their underestimated wall
clock time: 10% Hopper’s jobs, 11% of Edison’s and
8% of Carver’s.

• Carver has the most homogeneous workload (more
similar jobs, similarity among jobs in the same queue).
Hopper has a diverse workload with a complex job
mix in its queues.

• Carver has the longest wait times, although its jobs
allocate significantly fewer core-hours than jobs on
Hopper and Edison.

• On all systems, the wait time increases as jobs al-
locate more resources. The wait time decreases with
higher priority in most cases. In some cases anom-
alies are observed; e.g. larger jobs with lower priority
experience shorter wait time.

Although these results represent the state of current
systems, it is relevant to understand their di↵erence to ex-
iting work on workloads analysis of similar systems. In
particular, our results were compared to analyses on In-
trepid an Stampede, one current and one past HPC sys-
tems.

Intrepid was a Blue Gene/P supercomputer, with
163,840 cores, 80 TB of memory (512 MB per core), cus-
tom interconnect, peak Linpack performance of
458.6 TFLOPS, and was deployed in 2008 at the Argonne
National Laboratory. From the point of view of config-
uration, Intrepid is more similar to Carver, as both are
Teraflop systems and closer in deployment time. However,
Intrepid is a Blue Gene/P system, characterized by provid-
ing compute power through smaller but more numerous
CPU cores, an opposing approach to the analyzed NERSC
systems’ architecture, based on more powerful cores. We
compare with a trace from nine months of Intrepid in 2009
[1].

Stampede is a POWEREDGE C8220 high performance
cluster with 462,462 cores, an Infiniband interconnect, that
can deliver up to 8 PFLOPS. It was deployed at the Texas
Advanced Computing Center (Univ. of Texas) in 2012.
Stampede could be compared to Edison or Hopper in terms
of capacity, but its architecture di↵er from them as its pro-
cessing units are hybrid. Stampede includes both Xeon
and Phi processors in its compute nodes. For applications
using its Xeon processors, Stampede performs like Edison
or Hopper, in fact, Edison’s processor are the next genera-
tion (Ivy Bridge) to Stampede’s (Sandy Bridge). However,
the Phi processors are di↵erent. They are manycore pro-
cessors that include 61 light but power e�cient CPU cores,
from a generation before current Knightslanding (KNL)

manycore Intel chips [25]. Phi processors require a regular
processor to load work on them and manage their opera-
tions. We compare with an analysis over a trace of three
months of Stampede in 2013 [26].

Looking into the workloads, Edison and Hopper’s wall
clock time distribution matches the patterns observed on
Intrepid [1]. Carver’s run time CDF is steeper and similar
to Stampede [26]. Jobs in all three systems use fewer cores
than Intrepid. Edison and Hopper jobs are similar to the
jobs on Stampede in terms of cores.

The serial queue jobs on Carver dominate the distri-
bution. Thus, Carver jobs are very di↵erent from Edison
and Hopper and other HPC systems. Edison and Hopper
share characteristics with reference systems like Intrepid
or Stampede. It is possible that current DOE Leader-
ship Computing Facilities exhibit slightly di↵erent work-
load characteristics [27]. This work is a first step to un-
derstand if results from NERSC may translate to such fa-
cilities.

8.2. Summary of results, systems lifetime evolution

Observing the evolution of large scientific infrastructu-
res through their life time allows to understand systems
evolution as their use mature. It also provides data to
support the characteristics of future workloads.

Figure 13 presents how Hopper’s workload evolved to
a more uniform job mix. However, Carver presents a spike
in the second year of its lifetime, to return to values similar
to the beginning. Hopper results capture the nature evo-
lution of systems, where the scheduler and other machine
characteristics are refined based on the workload charac-
teristics. Carver su↵ered two significant changes in 2011
that might have a↵ected its diversity. First, Carver was ex-
panded in 2011 [28]. Second, the serial batch queue (long
running, low degree of parallelization) was added [29].

Figure 11 presents how the wait time steadily increases
as the systems age, this fits with a growing scientific com-
munity using the same system and more advanced applica-
tions that require faster infrastructure. Still, there is one
exception, in 2011 Carver presented significantly smaller
wait times. This could be attributed to its expansion in
2011.

As Hopper and Carver are compared in Figure 8 and
Figure 10, the analysis on the evolution of the job geome-
try reveal that Hopper jobs (which had shorter jobs but
with a higher degree of parallelism than Carver) seems
be increasing their wall clock time but using fewer CPU
cores, while Carver jobs (which had longer jobs but with
a lower degree of parallelism than Hopper) are decreasing
their wall clock time and using more CPU cores.

In general, it is interesting to observe signs that would
support the idea that as a systems ages, its workload vari-
ables evolve with a distinct trend, becoming more homo-
geneous but putting an increasing pressure on the available
resources.

15

49

System Vendor Model Built Nodes Cores/N Cores Memory Network TFlops/s Processor
Intrepid IBM Blue Gene/P 2008 40,960 4 163,840 80 TB Torus 557.1 Blue Gene
Stampede Dell PowerEdge 2012 6,400 16+61 462,462 192 TB Inf. FDR 8,520 Xeon, Phi

Table 7: Intrepid and Stampede characteristics

8.3. Conclusions

Analyzing NERSC’s workload o↵ered a challenge that
required new analysis tools. For this, we establish a me-
thodology that include traditional workload analysis tech-
niques (e.g., CDF analysis of job variables) but incorpor-
ates new methods to asses job heterogeneity. The job he-
terogeneity analysis includes a novel algorithm that em-
ploy’s k -means clustering to detect the minimum number
of dominant job geometries in an HPC workload. The me-
thod also analyzes the mapping of dominant job groups
on the system prioritization schema and the resulting job
wait times. This enables to asses the e↵ect of job hetero-
geneity on the the scheduling performance in terms of wait
time.

The results of the first application of this methodo-
logy establish a reference of the state of the workload in
2014 of three high performance systems (Edison, Hopper,
and Carver). Such systems are similar size, architecture,
and workload to many other current HPC systems. These
results can be of use to understand the behavior in other
systems, and among them we highlight: (1) The job geo-
metries were fairly diverse including significant number of
smaller jobs compared to older systems. The low per queue
homogeneity indexes, show that (2) single priority policies
are a↵ecting jobs with a fairly diverse geometry. The wait
time analysis shows that (3) studied queues with low ho-
mogeneity indexes present poor correlation between job’s
wait time and geometry. Job’s submission patterns show
that (4) the accuracy of users’ predictions of their job’s
wall clock time (fundamental for the performance of back-
filling functions) is very low, and does not improve over
time. Finally, (5) Hopper and Carver workloads presented
a clear trend in their four year lifetime: they become less
diverse, their queues classify better their jobs, and they
become more similar. (6) Also, they experience a heavy
load that increases the overall wait times.

Our results and methodology are of use for future sche-
duling research and systems operations management. Sche-
duling research needs to address present and future work-
loads and our results set a first step to understand charac-
teristics of future systems (e.g., diverse jobs, smaller jobs,
or low accuracy in runtime estimations).

For system management, we highlight a result and an
alternative application of our methodology. First, low va-
lues on wall clock time accuracy points to further research
on how to encourage users to encourage users to provide
better predictions. Better runtime accuracy will increase
the quality of the backfilling in schedulers. Finally, the
dominant job groups produced by the job heterogeneity
analysis could be a template to define priority groups and
queues. Our results show that diverse queues o↵ered hard

to predict wait times. Queues obtained by subdividing
dominant job groups could show predictable wait times.

9. Acknowledgments

This material is based upon work supported by the
U.S. Department of Energy, O�ce of Science, O�ce of
Advanced Scientific Computing Research (ASCR) and the
National Energy Research Scientific Computing Center,
a DOE O�ce of Science User Facility supported by the
O�ce of Science of the U.S. Department of Energy un-
der Contract No. DE-AC02-05CH11231. Financial sup-
port has been provided in part by the Swedish Govern-
ment’s strategic e↵ort eSSENCE, by the European Union’s
Seventh Framework Programme under grant agreement
610711 (CACTOS), the European Unions Framework Pro-
gramme Horizon 2020 under grant agreement 732667 (RE-
CAP), and the Swedish Research Council (VR) under con-
tract number C0590801 for the project Cloud Control. We
would like to thank Sophia Pasadis for editing help with
the paper.

References

[1] D. Feitelson, Parallel workloads archive 71 (86) (2007) 337–360,
http://www.cs.huji.ac.il/labs/parallel/workload.

[2] NERSC, http://www.nersc.gov, 2015-01-18.
[3] G. P. R. Alvarez, P.-O. Östberg, E. Elmroth, K. Antypas,

R. Gerber, L. Ramakrishnan, Towards understanding job hete-
rogeneity in hpc: A nersc case study, in: 2016 16th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Comput-
ing (CCGrid), IEEE, 2016, pp. 521–526.

[4] G. Rodrigo, P.-O. Östberg, E. Elmroth, K. Antypass, R. Gerber,
L. Ramakrishnan, HPC system lifetime story: Workload char-
acterization and evolutionary analyses on NERSC systems, in:
The 24th International ACM Symposium on High-Performance
Distributed Computing (HPDC), 2015.

[5] M. A. Bauer, A. Biem, S. McIntyre, N. Tamura, Y. Xie, High-
performance parallel and stream processing of x-ray microdif-
fraction data on multicores, in: Journal of Physics: Conference
Series, Vol. 341, IOP Publishing, 2012, p. 012025.

[6] S. N. Srirama, P. Jakovits, E. Vainikko, Adapting scientific com-
puting problems to clouds using mapreduce, Future Generation
Computer Systems 28 (1) (2012) 184–192.

[7] T. Hey, S. Tansley, K. M. Tolle, et al., The fourth paradigm:
data-intensive scientific discovery, Vol. 1, Microsoft research
Redmond, WA, 2009.

[8] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, Parallel job
scheduling, a status report, in: Job Scheduling Strategies for
Parallel Processing, Springer, 2005, pp. 1–16.

[9] D. A. Lifka, The ANL/IBM SP scheduling system, in: Job Sche-
duling Strategies for Parallel Processing, Springer, 1995, pp.
295–303.

[10] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters,
D. Epema, The grid workloads archive, Future Generation Com-
puter Systems 24 (7) (2008) 672–686.

[11] A. K. Mishra, J. L. Hellerstein, W. Cirne, C. R. Das, Towards
characterizing cloud backend workloads: insights from google

16

50

compute clusters, ACM SIGMETRICS Performance Evaluation
Review 37 (4) (2010) 34–41.

[12] K. Antypas, B. A. Austin, T. L. Butler, R. A. Gerber, NERSC
workload analysis on Hopper, Tech. rep., LBNL Report: 6804E
(October 2014).

[13] NERSC, Submitting batch jobs (carver), https:

//www.nersc.gov/users/computational-systems/carver/

running-jobs/batch-jobs/, 2015.1.15.
[14] C. Vaughan, M. Rajan, R. Barrett, D. Doerfler, K. Pedretti,

Investigating the impact of the Cielo Cray XE6 architecture on
scientific application codes, in: 2011 IEEE International Sym-
posium on Parallel and Distributed Processing Workshops and
Phd Forum (IPDPSW), IEEE, 2011, pp. 1831–1837.

[15] T. M. Declerck, I. Sakrejda, External Torque/Moab on an XC30
and Fairshare, Tech. rep., NERSC, Lawrence Berkeley National
Lab (2013).

[16] Y. Etsion, D. Tsafrir, A short survey of commercial cluster
batch schedulers, School of Computer Science and Engineering,
The Hebrew University of Jerusalem 44221 (2005) 2005–13.

[17] G. Staples, Torque resource manager, in: Proceedings of the
2006 ACM/IEEE conference on Supercomputing, ACM, 2006,
p. 8.

[18] K. Antypas, NERSC-6 workload analysis and benchmark selec-
tion process, Lawrence Berkeley National Laboratory.

[19] NERSC, Queues and polices (carver), https://www.nersc.

gov/users/computational-systems/carver/running-jobs/

queues-and-policies/, 2014.1.15.
URL https://www.nersc.gov/users/computational-systems/

carver/running-jobs/queues-and-policies/

[20] J. Weinberg, A. Snavely, Symbiotic space-sharing on sdsc’s
datastar system, in: Job Scheduling Strategies for Parallel Pro-
cessing, Springer, 2007, pp. 192–209.

[21] J. D. Hunter, Matplotlib: A 2D graphics environment, Com-
puting In Science & Engineering 9 (3) (2007) 90–95.

[22] W. W.-S. Wei, Time series analysis, Addison-Wesley publ, 1994.
[23] A. Coates, A. Y. Ng, Learning feature representations with k-

means, in: Neural networks: Tricks of the trade, Springer, 2012,
pp. 561–580.

[24] J. A. Hartigan, M. A. Wong, Algorithm as 136: A k-means
clustering algorithm, Applied statistics (1979) 100–108.

[25] A. Sodani, Knights landing (knl): 2nd generation intel R� xeon
phi processor, in: Hot Chips 27 Symposium (HCS), 2015 IEEE,
IEEE, 2015, pp. 1–24.

[26] J. Emeras, Workload traces analysis and replay in large scale
distributed systems, Ph.D. thesis, Grenoble INP (2014).

[27] S. Ahern, S. R. Alam, M. R. Fahey, R. J. Hartman-Baker, R. F.
Barrett, R. A. Kendall, D. B. Kothe, R. T. Mills, R. Sankaran,
A. N. Tharrington, et al., Scientific application requirements for
leadership computing at the exascale, Tech. rep., Oak Ridge Na-
tional Laboratory (ORNL); Center for Computational Sciences
(2007).

[28] NERSC, Magellan batch queues on carver, http://www.

nersc.gov/REST/announcements/message_text.php?id=1991,
2015.01.15.
URL http://www.nersc.gov/REST/announcements/message_

text.php?id=1991

[29] NERSC, Serial queue on carver/magellan, http://www.

nersc.gov/REST/announcements/message_text.php?id=2007,
2015.01.15.
URL http://www.nersc.gov/REST/announcements/message_

text.php?id=2007

17

51

Paper II

Priority Operators for Fairshare Scheduling

Gonzalo P. Rodrigo, Per-Olov Östberg, and Erik Elmroth

In 18th Workshop on Job Scheduling Strategies for Parallel Processing, pp
.70-89, Springer International Publishing, 2014.

Priority Operators for Fairshare Scheduling

Gonzalo P. Rodrigo, Per-Olov Östberg, and Erik Elmroth

Distributed systems group,
Department of Computing Science, Ume̊a Univeristy,

SE-901 87, Ume̊a Sweden
{gonzalo,p-o,elmroth}@cs.umu.se

www.cloudresearch.se

Abstract. Decentralized prioritization is a technique to influence job
scheduling order in grid fairshare scheduling without centralized control.
The technique uses an algorithm that measures individual user distances
between quota allocations and historical resource usage (intended and
current system state) to establish a semantic for prioritization. In this
work we address design and evaluation of priority operators, mathemat-
ical functions to determine such distances. We identify desirable opera-
tor characteristics, establish a methodology for operator evaluation, and
evaluate a set of proposed operators for the algorithm.

1 Introduction

Fairshare scheduling is a scheduling technique derived from an operating system
task scheduler algorithm [1] that prioritizes tasks based on the historical resource
usage of the task owner rather than that of the task itself. This technique defines
a ”fair” model of resource sharing that allows users to receive system capacity
proportional to quota allocations irrespective of the number of tasks they have
running on the system (i.e. preventing starvation of users with fewer tasks).

In local resource management (cluster scheduler) systems such as SLURM [2]
and Maui [3], this prioritization technique is extended to job level and fairshare
prioritization is used to influence scheduling order for jobs based on historical
consumption of resource capacity. At this level, fairshare is typically treated as
one scheduling factor among many and administrators can assign weights to
configure the relative importance of fairsharing in systems.

For distributed computing environment such as compute grids [4], a model for
decentralized fairshare scheduling based on distribution of hierarchical allocation
policies is proposed in [5], and a prototype realization and evaluation of the
model is presented in [6]. Based on this work a generalized model for decentralized
prioritization in distributed computing is discussed in [7], and we here extend on
this work and address design and evaluation of priority operators: mathematical
functions to determine the distance between individual users’ quota allocations
and historical resource consumption.

55

2 Gonzalo P. Rodrigo, Per-Olov Östberg, Erik Elmroth

2 Decentralized Prioritization

2.1 Model

Fig. 1. A computational pipeline for decentralized prioritization. Illustration from [7].

As illustrated in Figure 1, the decentralized prioritization model defines a
computational pipeline for calculation and application of prioritization. From
a high level, this pipeline can be summarized in three steps: distribution of
prioritization information (historical usage records and quota allocations), cal-
culation of prioritization data, and domain-specific application of prioritization
(e.g., fairshare prioritization of jobs in cluster scheduling). To model organiza-

Fig. 2. A tree-based priority calculation algorithm. Tree structure models organization
hierarchies (two virtual organizations and a local resource queue). Illustration from [6].

tional hierarchies, the system expresses prioritization target functions (quota
allocations or intended system behavior) in tree formats, and prioritization cal-
culation is performed using an algorithm that uses tree structures to e�ciently
calculate prioritization ordering for users. The tree calculation part of the algo-
rithm is illustrated in Figure 2, where the distance between the intended system
state (target tree) and the current system state (measured tree) is calculated
via node-wise application of a priority operator (in this case subtraction). The
algorithm produces a priority tree - a single data structure containing all priority
information needed for prioritization.

For application of prioritization (the last step in the pipeline), priority vec-
tors are extracted from the priority tree and used to infer a prioritization order
of the items to be prioritized. In fairshare prioritization of jobs in grid scheduling
for example, the target tree contains quota information for users, the (measured)
state tree contains a summation of historical usage information for users, and
the resulting priority tree contains a measurement of how much of their respec-
tive quota each user has consumed. As each user is represented with a unique
node in the trees, the values along the tree path to the node can be used to
construct a priority vector for the user. Full details of the prioritization pipeline
and computation algorithm are available in [6] and [7].

56

Priority Operators for Fairshare Scheduling 3

2.2 Challenges / Resolution Limitations

As priority operators lie at the heart of the prioritization algorithm, operator
design can have great impact on the semantics of prioritization systems, and
further understanding of the characteristics of the priority operator functions is
needed, motivating the first part of this work.

0.3$ 0.2$ 0.1$ '0.1$ 0.2$

0.3$ 0.2$ 0.0$ '0.2$ 0.1$

0.1$ '0.5$ 0.2$ 0.1$ 0.0$

v1

v2

v3 v1
v2

v3

Target
Tree

s

p=F(t,s)

Priority
tree

State
Tree

t p

Fig. 3. Construction of priority tree and priority vectors

On the other side, the decentralized fairshare prioritization systems are meant
to serve a number of resource management systems in environments created from
large complex multilevel organizations. The resources access is governed by poli-
cies which structure is mapped from those organization and, as a consequence,
these policies have the shape of large trees (both deep and wide). After using the
priority operators to create the priority tree (as seen in Figure 2), the tree is tra-
versed from top to bottom extracting the priority vectors (Figure 3) which have
independent components representing each ”level” of corresponding subgroups
in the tree. The vector with the highest value at the most relevant component
is the one chosen. For two or more vectors with the same component value,
subsequent components are used to determine priority order.

0.3$ 0.2$ 0.1$ '0.1$ 0.2$

0.3$ 0.2$ 0.0$ '0.2$ 0.1$

u1

u2

6499$ 5999$ 5499$ 4499$ 5999$

6499$ 5999$ 5999$ 3999$ 5499$

u1

u2

64995999549944995999$

64995999599939995499$

u1

u2

scalar(p, r) = floor

✓✓
p+ 1
2

◆
⇤ r

◆

Fig. 4. Priority vector serialization, resolu-
tion r=10000.

0.11$ 0.2$

0.1$ 0.3$

u1

u2

55$ 60$

55$ 65$

u1

u2

5560$

5565$

u1

u2

0.11$ 0.2$

0.1$ 0.3$

u1

u2

555$ 600$

550$ 650$

u1

u2

555600$

550650$

u1

u2

R=100$ R=1000$

Fig. 5. Resolution limitation impact on the
ordering process.

However, the dimension of the overall system is translated to the size of the
vector. To simplify the compare operations they are mapped on lexicographic
strings. As we can see in Figure 4, for an example scalar resolution of 10000, each
component of the vector is linearly mapped to a scalar in the range of 0 to 9999,
where �1 is translated to 0 and 1 to 9999. Then, the values are concatenated

57

4 Gonzalo P. Rodrigo, Per-Olov Östberg, Erik Elmroth

to construct the final string. In this example, by comparing the scalar with a
simple numeric operation we can determine that u2 has a greater priority than
u1 (full process described in [6]). It is important to highlight that the full final
string is needed, because any transformation of the vectors that would not keep
the individual element presence in it would eliminate the capacity of dividing
the share in a true hierarchical way.

However, mapping the priority values to a scalar space with a limited domain
has consequences: A number of priority values will map to the same scalar, which
may a↵ect the ordering process. In Figure 5 two users have two di↵erent priority
vectors, when the scalar resolution is 100, the first components of both vectors
map to the same scalar, although u1 has a greater priority. The result is that
the u2 gets a final bigger scalar string, and thus is selected over u1. When we
increase the resolution to 1000 we observe how the ordering becomes correct.

At the same time, it is also important to remember that it is desirable to
use the smallest possible resolution. The overall size of the system, will bring
thousands of users organized in deep trees, increasing the number of comparisons
and elements in each priority vector. Any small reduction in the resolution will
have a significant impact on the resources needed to compute the priority vectors.

The behavior of the operators in low resolution has to be understood and
modeled, motivating the second part of this work in which we will study its
impact on each operator performance and the trade-o↵ between resolution and
other characteristics of the system.

3 Operator design

3.1 Operator definition

For fairshare prioritization, we define priority operators as:

1. An operator is a function with two input variables such that:

t 2 [0, 1], s 2 [0, 1]) F (t, s) 2 [�1, 1] (1)

F (t, s) = 0 () t = s

F (t, s) > 0 () t > s

F (t, s) < 0 () t < s

(2)

where t represents a target value, s a (normalized) state value and t = s is
the ideal balance axis transecting the operator value space.

2. The function is strictly increasing on target and strictly decreasing on state:

8tj , ti, sj , si, t, s 2(0, 1],
F (tj , u) > F (ti, u) () tj > ti

F (tj , si) > F (tj , sj) () sj < si

F (tj , s) = F (ti, s) () tj = ti

F (t, si) = F (t, sj) () sj = si

(3)

3. Operator functions are idempotent and deterministic.

58

Priority Operators for Fairshare Scheduling 5

3.2 Operator characteristics

Desirable operator characteristics are dependent on application scenarios. In the
context of ordering prioritization (ranking) problems it is considered desirable
for operators to:

1. Have well-defined boundary behaviors:

8s 2 (0, 1], t = 0 =) F (t, s) = �1

8t 2 (0, 1], s = 0 =) F (t, s) = 1
(4)

so users with target 0 will always get the lowest possible priority (-1) and
users with some target but state 0 will get the highest possible priority (1).

2. Subgroup Isolation: Depend only on target and state values of subgroup
member nodes.

3. Redistribute unused resource capacity among users in the same subgroup
proportionally to their allocations.

4. Be computationally e�cient and have minimal memory footprint.
5. Abide by the principle of equivalence: Two operators F, F 0are equivalent if

they would produce the same priority ordering for a set of users knowing
their target and state history. Equivalent operators will have the same char-
acteristics for user priority ordering problems. This property is not strictly
desirable for an operator but it can be used to assure that all ordering char-
acteristics proved for an operator are automatically proved for the equivalent
ones.

3.3 Operators object of study

In this section we will present the operators that are already used in the fairshare
prioritization plus one new contribution (Sigmoid) and one brought from the
open source cluster scheduler SLURM. The Absolute, Relative, Relative-2 and
Combined operators are defined in [6]

1. Absolute: Expressed by the subtraction of the target and the state.

dAbsolute = t� s (5)

2. Relative: Express what proportion of the user’s allocation is available.

dRelative =

8
>><

>>:

t� s

t
s < t

0 s = t

�s� t

s
s > t

(6)

3. Relative exponential: Increases the e↵ects of the Relative.

dRelative�n =

8
>>>><

>>>>:

✓
t� s

t

◆n

s < t

0 s = t

�
✓
s� t

s

◆n

s > t

(7)

59

6 Gonzalo P. Rodrigo, Per-Olov Östberg, Erik Elmroth

4. Sigmoid: Designed as a vertical inverse of the relative operator.

dSigmoid =

8
>>>><

>>>>:

sin

✓
⇡

2

t� s

t

◆
s < t

0 s = t

� sin

✓
⇡

2

s� t

s

◆
s > t

(8)

5. Sigmoid Exponential: Increases the e↵ects of the Sigmoid.

dSigmoid�n =

8
>>>>>><

>>>>>>:

n

s

sin

✓
⇡

2

t� s

t

◆
s < t

0 s = t

� n

s

sin

✓
⇡

2

s� t

s

◆
s > t

(9)

6. Combined: Controlled aggregation of the Absolute and Relative operators.

dCombined = k · dAbsolute + (1� k)dRelative�2 8k 2 [0, 1] (10)

7. SLURM: The operator used by the SLURM scheduling system [8].

dSLURMOriginal = 2(
�s
t) (11)

Modified to the operator output value range [�1, 1]

dSLURM = 2(1+
�s
t) � 1 (12)

4 Operator evaluation

We investigate each operator for each desirable operator characteristic.

4.1 Operator Definition

First we start with the second point of the definition. For each operator we study
the sign of the first derivative when t 6= s. For all operators F:

8s, t 2 [0, 1] ^ t 6= s :

d(F (t, s))

d(p)
> 0,

d(F (t, s))

d(s)
< 0

(13)

assuring the compliance of this part of the definition. Then, as all F (p, d) are
strictly increasing on t and strictly decreasing on s, by studying the upper and
lower bounds of the input space we can assure the compliance of the output
value space:

F (1, 0) 1, F (0, 0) = 0, F (0, 1) � �1

s, t 2 [0, 1] ^ t = s , F (t, s) = 0
(14)

60

Priority Operators for Fairshare Scheduling 7

4.2 Boundary behavior

In Table 1 we observe the priority values in the boundary cases for each operator:

Operator t = 0 s = 0
Absolute �s t

Relative �1 1
Relative-2. �1 1
Combined �0.5� s

2 0.5 + t
2

Sigmoid �1 1
Sigmoid-2 �1 1
SLURM �1 1

Table 1. Boundary behavior for each operator

The Absolute and Combined operator fail to comply with this property. For
the Absolute, the maximum and minimum possible priority are limited in each
case by the target value. The Combined operator inherits this behavior from the
Absolute component in the operator.

4.3 Subgroup isolation

This property is assured by the definition of the operators: They take into ac-
count only the state and target of the corresponding nodes, which are related to
the values of the nodes in the same subgroup as the first represents what share
of the usage of this subgroup corresponds to this node and the latter what share
of the usage should correspond to it. No data out of the subgroup is used to
calculate this input values.

4.4 Proportional distribution of unused share

The situation in which a subset of users in a subgroup are not submitting jobs
can be understood as an scenario with a new set of target values (virtual tar-
get): Eliminating the non submitting users and recalculating the target of the
submitting users dividing the non-used share among them in proportion to their
original targets. If the system would only operate with the virtual target as the
input for the operator, it would converge to that new target. If an operator pro-
duces the same ordering with the virtual target (all users submitting jobs) and
the old target (but with some users not submitting jobs), then we can state that
the operator will bring the system to the virtual target (even if the input is the
old target), spreading the unused share proportionally to the user’s targets. If
we define T = {set of indexes of the users submitting jobs}. The condition to be
complied by the operator can be expressed as:

i, j 2 T : t0i =
tiP
i2T ti

,
X

i2T
ti 1, t0i � ti

8t0i, t0j , si, sj 2 [0, 1] :

1. F (t0j , sj) > F (t0i, si)) F (tj , sj) > F (ti, si)
2. F (t0j , sj) = F (t0i, si)) F (tj , sj) = F (ti, si)

(15)

61

8 Gonzalo P. Rodrigo, Per-Olov Östberg, Erik Elmroth

where ti the target of user i, si the normalized state of user i and t0i the virtual
target of the user i after adding the proportional part of the unused share.
Following this reasoning we proved in [9] that the Relative operator complies
with this property and that any operator which would produce the same ordering
would also comply with this property. As we will see in the following section,
the Relative-2, Sigmoid, Sigmoid-2 and SLURM operators are equivalent to the
Relative,so we can conclude that they will also distribute proportionally the
unused share among the active users of the same subgroup.

4.5 Computationally e�cient

Looking into the formulation of the di↵erent operators it is obvious that those
ones including power, root or trigonometric operations will be more complex in
math related cpu cycles. On memory requirements all should perform in a similar
way. Still, the real performance of this operators will largely depend on the final
implementation, as a consequence we leave this matter for the evaluation of
implemented systems.

4.6 Equivalence

We formulated a theorem in [10] that allows to state that two operator are equiva-
lent under one condition: if two operators F, F 0 Have the sameG(F, tj , sj , ti) = si
so F (tj , sj) = F (ti, si), then, they are equivalent and thus, produce the same
ordering. We observe that G for the Relative operator is:

G(F, tj , sj , ti) = sj
ti
tj

(16)

As we analyze the operators we can state that the Relative exponential, Sig-
moid, Sigmoid exponential and SLURM operators share the same G and thus
they are equivalent, sharing the same ordering characteristics: Proportional dis-
tribution of unused share among peering users. The Absolute and Combined
have a di↵erent G between them and towards the Relative.

5 Limited output resolution

For the definition of the problem, we consider the number of possible scalar
values as the resolution r. Also, under a certain resolution, each priority value p
will have a resulting e↵ective priority value S(p, r), understood as the minimum
priority value that will have the same corresponding scalar as p. By applying the
scalar formula from Figure 4 and composing it with its own inverse function, we
can calculate this e↵ective priority value as:

S(p, r) =
scalar(p, r)

r
⇤ 2� 1 (17)

62

Priority Operators for Fairshare Scheduling 9

5.1 Methodology

The output resolution problem on each operator will be studied in three steps.
In the first place we will present a coarse grained study of how all the possible
input pairs (t, s) are divided in sets which elements map on the same priority
value. We could argue that for an operator, the bigger the set corresponding to
a priory value p, the smaller resolving power (capacity to distinguish between
two users) around p and vice versa. We will call this the input density study.

The second approach will be a fine grained extension of the previous. We will
observe that priority operators are not defined for the full output range [�1, 1]
on all the possible input target values. When the input density is calculated for
a priority value, it aggregates all the corresponding state values for each input
target value (no matter if there is corresponding output or not), averaging the
data of the resulting analysis and hiding the local behavior of the operators.
For this second approach we will study each target value, analyzing the sizes of
the sets of state values that map on the same output priority value. For a given
operator, priority p and target t, the bigger the set of state values corresponding
to the that p under t,the smaller resolving power and vice versa. We will call
this the input local density study.

Finally, we will bring the input local density study to a semi-real scenario.
We will define a grid scenario with a time window, resource dimension and a
fictitious average job size. Then, we will determine what is the minimum output
resolution required for that job to be significant for a certain user to make
sure that its corresponding priority value changes. This study will be based on
the previous step, as the input local density of a priority, target values can be
understood as the minimum amount of normalized state that has to be added
to the history of a user to assure that its corresponding priority value changes.
We will call this the jobs size analysis.

In all cases the study will be focused on certain output ranges that are
significant to the system: Around balance, where the state value of user is close
to its target; under target, when the state is far under the target; and over target,
when the state is far over the target.

5.2 Input density analysis

Calculation method For this analysis we needed to calculate the relationship
between the input values corresponding to an e↵ective priority value and the
complete input range. The method follows a geometry approach when possible.
In Figure 6 we can observe the e↵ect of the discretization on the output of the
Absolute operator: for each priority value p there is one horizontal surface related
to the set of (t, s) that produced that e↵ective priority value. The area of each
surface will represent the relative size of that set, as a consequence, what we are
looking for: the input density corresponding to p. When the geometrics of the
surface were not simple enough, we used sampling to study the number of input
values corresponding the the same priority value.

63

Fig. 6. 3D Representation of e↵ec-
tive priorities for the Absolute oper-
ator, output resolution 3 bits (8 val-
ues).

Fig. 7. Input density, Absolute operator, 3
bits, 8 values.

Input density results In order to generate all the input density maps, we run
experiments for all the resolutions between 8 and 1048576, in order to ease this
description we will talk from now on about the bits needed to represent a given
resolution, in this case from 3 to 20 bits. Also, as we increased resolution we
noticed something expected, the di↵erences between the priority values became
less and less significant. However, for the lower resolutions the operators kept
a similar relationship in the same priority value areas.We have chosen 3 bits (8
values) to present the results as it is enough to show the e↵ects of low resolution
on each operator.

The results for the operators are presented in the format shown in Figure 7.
The data of all operators is presented in the heat map on Figure 8. We can
observe many things in this graph, in the first place there is an symmetric be-
havior around balance for most of the operators (except for the Combined and
SLURM). Also we observe that the Relative operator presents the same input
density for all its priority values. That the Sigmoid-2 presents the lowest den-
sity around balance while the highest around the over/under target cases. The
Absolute operator is the one presenting the lowest density in the over/under tar-
get cases. This implies that the Sigmoid-2 operator should present the highest
resolving power around balance while the lowest in the case of over usage and
under usage. In the case of the Relative it presents the same resolving power
along the whole output spectrum.

Considerations about this analysis The input density analysis gives a coarse
grained picture of the resolution problem, it presents roughly how the whole in-
put is mapped to the output. However, it fails to demonstrate the particularities
of the operators. As we will see in the next section, the operators present dif-
ferent input local density distribution for di↵erent target values. As the density

64

Fig. 8. Absolute Input density comparison
among all operators, 3 bits, 8 values.

Fig. 9. Aggregation of the input density
analysis for di↵erent target values, Abso-
lute operator. Resolutions 3 bits.

of a priority value is the normalized aggregation of the local input densities in
the whole target ranges, higher values are combined with lower ones, averaging
the final result, even more significant as the operators are not covering the full
output range for all the target values. Let’s illustrate this with an example: the
Absolute operator. According to the results in this section it presents a high
resolving power around the over/under target areas and low around balance.
However, lets look into what happens for each target value (results derived from
next section), in Figure 9 we can see the aggregation of input local densities
for 11 di↵erent targets between 0.0 and 1.0. The first observation is that, as
expected, not all targets can generate the full priority range. However, what is
more important is that, the resolving power is the same in all cases. This result
seems contradictory to the one observed in Figure 7. This apparent divergence
comes from the fact that the input density is the aggregation of the input local
density along the target range, hiding the local behavior, best cases scenarios and
worst case scenarios. We can conclude that the input density view gives an over-
all picture of the operator behavior but it is incomplete without the per-target
input local density study.

5.3 Input local density analysis

Calculation methods In order to calculate the input local density for an op-
erator, we will use an inverse method. For a operator F , a priority p, target t
and resolution r, we will compute the lowest and highest state values which pro-
duce the e↵ective priority p for target t. The local density will be the di↵erence

65

12 Gonzalo P. Rodrigo, Per-Olov Östberg, Erik Elmroth

between them. This can be expressed as:

D(F, p, t, r) = |sj � si| : S(p, r) = f ^
(8si s sj , F (t, s) = f) ^

(8s < si ^ sj < s, F (t, s) 6= f)

(18)

In order to calculate those sj , si we will use the inverse expression of the
operators on the input s and the set of possible e↵ective priority values for
resolution r, Pr. The resulting operation is:

D(F, pi, t, r) = si+1 � si = Is(F, pi+1, t)� Is(F, pi, t) (19)

where:

Pr = {pi : i 2 Nr, pi = �1 + (i� 1) · 2
r
} (20)

(For example P4 = {�1,�0.5, 0, 0.5}) and the inverse function on s of operator
F is:

Is(F, p, t) = s : F (t, s) = p (21)

Input local density results For this study we run experiments for all the
resolutions between 3 and 20 bits. The target range was divided in 10 values,
[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], as the functions are strict increasing on
the target, this should be enough to appreciate the general tendency. This con-
forms 180 operator profiles, which had to be analyzed. One example of the
aggregation of all the profiles for the Absolute operator and resolution 3 bits is
the Figure 9.

As the resolution was increasing we noticed something expected, the local
densities were becoming more similar for a given operator, policy and target.
However, for the lower resolutions they kept a similar relationship in the same
priority areas. We have chosen 3 bits for the resolution and 0.1, 0.5 as the target
values (as they represent one extreme and middle point) to illustrate the behavior
of the operators under low resolution.

In Figure 10 we can see one way to represent this data, the operator profile:
an overlap between the input density corresponding and the operator plot for the
defined target value. It will correlate graphically the priority value, input target,
input state and input density, where we consider lower input local densities as
something desirable since they indicate higher resolving power. This is the way
to interpret them: The horizontal axis represents normalized state from 0.0 to
1.0 while the vertical axis is composed by a range of priority values from -1
to 1. On the graph we represent the overlay of di↵erent operators in di↵erent
colors: The priority values and their corresponding state values in the shape of a
plotted line in the corresponding color. On the vertical axis the input density on
each priority value in the shape of an horizontal bar, in the corresponding color
(its unit is normalized state). In this representation it is possible to observe the
di↵erent operator function shapes while comparing the di↵erent density inputs.
In Figure 11 we can observe the contraposition of the Sigmoid-2 and Relative-2,

66

Fig. 10. Operator Profile overlay all oper-
ators. Resolution 3 bits. target value 0.1

Fig. 11. Operator Profile overlay all oper-
ators. Resolution 3 bits. target value 0.5

how the Sigmoid shape is designed to o↵er the bigger slope (and thus, smaller
local density) around balance, and is more flat in the extremes.

As we compare the graphs in Figures 10 and 11 we observe that the range
of priority values present in the graphs is smaller as the target increases. This
is due to how the operator functions are built: none of them fully covering the
range [�1, 1]. As the target value increases the most negative value possible
for over-state becomes closer to 0.0 (for example, with the Absolute operator,
target=0.5 and state = 1.0, the minimum possible priority value is -0.5). This
has a first consequence on some of operators: as the target value increases, the
same input range of [0, 1] is mapped onto a smaller output range, increasing the
overall input local density, increasing the average size of the bars in the graphs.
One interesting point is that the Absolute operator presents a constant density
in all the graphs and all the priority values, this is due to the subtraction only
operation that composes it.

In order to ease the density analysis we mapped the density values on a
heat map which opposes the priority values and the operators. The result are
Figures 12 and 13. In which the a redder/darker color indicates a higher local
density (and lower resolving power) for a pair or operator and target value while a
yellower/lighter color implies a lower local density (and higher resolving power).
As we observe the graphs, we confirm that, certain operators have a lower input
local density behavior for di↵erent cases: In balance situations the Sigmoid and
Sigmoid-2 presented smaller densities. In under target situations, the Relative-
2 operators presented smaller densities. In situations of over target, again the
Sigmoid and Sigmoid-2 operators presented lower densities, although not much
lower. One intuitive conclusion of this section is that the Sigmoid family presents
a higher resolving power for the balance cases and over usage cases, while the
Relative operator presents a higher resolving power for the under usage cases.

67

Fig. 12. Input local density heat map.
Resolution 3 bits. target value 0.1

Fig. 13. Input local density heat map. Resolu-
tion 3 bits. target value 0.5

5.4 Job Size Analysis

In this study we will bring our analysis to a semi-real environment, a grid sce-
nario with a time window (representing the total historical usage taken into
account) and a set of resources. The idea is to understand how big a job has
to be to be significant for a user so its e↵ective priority value changes to the
next possible one. This will show how many decisions would be made with the
same priority values (although new jobs had been completed) or how many bits
(minim resolution) would be required for a single job to be significant.

Calculation Method In order to do this analysis we will start from the input
local density study. For a given resolution r, operator F , priority p and target t,
D(F, p, t, r) can be seen as the minimum amount that the state has to increase
to change the output e↵ective priority. This step can me expressed as:

M(F, t, s, r) = m : m 2 (0, 1] ^
S(F (t, s), r) 6= S(F (t, s+m), r) ^

@n : 0 < n < m ^ S(F (t, s), r) 6= S(F (t, s+ n), r)

(22)

This minim step can be translated to a job size, however, it is not trivial:
The impact of a job size on the normalized state will depend on the normalized
state by itself, as it represents how much of the state pool corresponds to this
user: Meaning that one job of a certain size will have a bigger impact for a user
with less normalized state than for one with a bigger one. The current state and
the state of a user after adding the length of a job can be expressed as:

68

Priority Operators for Fairshare Scheduling 15

sdi =

P
0<jd J

j
i

Ud
, Jd+1

i = k · Ud

sd+1
i =

P
0<jd J

j
i + Jd+1

i

Ud + Jd+1
i

=

P
0<jd J

j
i + k · Ud

Ud + k · Ud

=
(1 + k)(

P
0<jd J

j
i + k · Ud)

Ud
= (1 + k)(sdi + k)

(23)

were sdi is the normalized state of a user i at a time d, Jj
i is the size of a job

submitted by user i in the time j, Ud is all the state recorded for all users until
time d and k is the proportion between the job submitted in time d and the
total state recorded until d. This equation is an expression of the new state as a
function of the previous state and the proportion between the job and the time
window.

Our target is to obtain a function that calculates how big that proportion has
to be to jump from one two state values a user (sdi) to the next (sdi +1). Taking
those states as the boundaries for the local density calculation and expressing
sd+1
i � sdi substituting sd+1

i by the result in the Equation 23 we obtain:

D(F, pi, t, r) = sd+1
i � sdi = (1 + k)(sdi + k)� sdi

k2 + (1 + sdi)k �D(F, pi, t, r) = 0
(24)

Which can be solved by using the quadratic equations solving formula:

k = K(F, pi, t, r, s
d
i) =

�(1 + sdi) +
p
(1 + sdi)

2 + 4 ·D(F, pi, t, r)

2
(25)

This final result is an expression of k as a function of the operator, previous
state, target priority value and resolution. This will be used to calculate what
is the minimum job size to be submitted in order to change one user’s priority
value according to its current state and target and the corresponding operator
and resolution. Now that we can find the job size in any case, we established a
strategy for the calculations on each operator in each resolution: for each priority,
among all the possible k on each target , which is the biggest one (as a bigger k
means smaller job). This will allow us to calculate what would be the minimum
job size that would assure a change in the e↵ective priority value.

Job size analysis results We took the Swegrid [11] as a reference for this
study to create a synthetic example in which the time window is 1 year and the
resources managed 600 nodes. This implied that the total state pool of the time
window was Ud = 8760h/n ·600n = 5256000h. By using that Ud and the method
to obtain k we calculated the corresponding job size. We can say that a bigger
job size implies a smaller resolving power and a smaller job size implies a bigger
resolving power.

For the priority value to study, we focused our calculations in 3 contexts:
around balance, where the state is close to the target and the priority values are

69

Fig. 14. Job size in hours required to
alter user’s priority value when state is
close to target.

Fig. 15. Job size in hours required to alter
user’s priority value when state is under target.

in the range [�0.25, 0.25]; under target, where priority values are in the range
[0.6, 0.9]; and over target, where the priorities values are in the range [�0.9,�0.6].

We can observe the results of the around balance study in in Figure 14.
This heat map represents the worst case (bigger) among the minimum job size
required to make a di↵erence in the priority value for each resolution with each
operator. Bigger jobs (and thus smaller resolving power) are represented with
darker/redder color while smaller jobs (and thus bigger resolving power) imply
a lighter/yellower color. We limited the color range at jobs size 10,000h and used
a logarithmic scale for the color distribution. As we can observe the results are
independent of the resolution: the Absolute operator needs bigger jobs to make
a di↵erence, while the Sigmoid-2 has enough resolving power around balance to
always require a smaller job than the rest operators. If we order the operators by
job sizes from better to worse resolving power we obtain the following ordering:
Sigmoid-2, Sigmoid, SLURM, Relative, Relative-2, Combined, Absolute. This
ordering does not change as we increase resolution, although, as it was expected,
the job size decreases as the resolution increases.

In the over target scenario presented in Figure 16 we observe the follow-
ing ordering from better to worse resolving power in all resolutions: Sigmoid-2,
Sigmoid, SLURM, Relative, Absolute, Relative-2 and Combined. In the under
target scenario presented in Figure 15 we observe the following ordering in all
resolutions: Relative-2, Combined, SLURM, Sigmoid, Relative, and Sigmoid-2.

At this point we had a good vision of what was the impact of a certain job
for each operator in the studied cases. However we wanted to understand it from
a di↵erent point of view: For a given job size, what was the minimum resolution
in bits needed for an operator to make a di↵erence? We chose an average job size

70

Fig. 16. Job size in hours required to al-
ter user’s priority value when state is over
target.

Operator Balance Over t. Under t. Overall
Absolute 12 14 12 14
Relative 9 14 9 14
Relative-2 9 15 8 15
Sigmoid 9 12 9 12
Sigmoid-2 6 11 9 11
SLURM 9 13 8 13
Combined 10 15 8 15

Fig. 17. Output resolution bits required for
a job of 2,000h to be significant for a Tw=1
year and Rs=600 nodes. Less is better.

of 2000h (200h,10 nodes). This parameter only a↵ects to the gross value of bits
obtained for each operator however, it won’t change the relative relationship of
the operators.

By parsing the Figures 14, 15 and 16 we produced the results for Figure 17.
We can see how the Sigmoid-2 presents a clear advantage around situations
of balance. The Sigmoid-2 is the one requiring less bits in the case of balance
and over target. For under target, the Relative-2, SLURM and Combined per-
form better but only with small di↵erence. If we look at the overall picture, the
Sigmoid-2 operator is the one which requires less bits in balance and over target
while for under target it is just one bit away from the best.

6 Prior and related work

The need of this work was detected in earlier e↵orts. In [6] and [12], the family
of Relative and Combined operator were added as pointed in Section 3. The
system’s robustness and capabilities were tested and, as a side product, it was
discovered that the absolute operator and relative operator generated di↵erent
ordering when some users did not submit jobs. Also, convergence delays appeared
with low resolutions (required for large scale experiments). Those findings are
the motivation of this paper.

Fairshare priority is present as a decision factor in well known schedulers.
SLURM ([12] shows how our system can substitute SLURM’s fairshare engine),
as the rest of schedulers, is not meant to deal with as deep hierarchies as Karma
([8], [7]) so the output resolution of its operator is not constrained. SLURM
operator, as studied in this paper, complies with all our desired characteristics.
Maui [13] presents similar characteristics but uses a version of the Relative as
its operator. Other well known example is LSF used by the CERN [14], which
choses the absolute operator [15].

71

18 Gonzalo P. Rodrigo, Per-Olov Östberg, Erik Elmroth

The Karma hierarchical system is prepared for much deeper tree schemas
than current schedulers and to find work related to the priority resolution we
had to look into another scheduling field in which memory is limited: real time
schedulers for communication and embedded systems. During the study of the
monotonic scheduling algorithm in [16], this problem is named priority granu-
larity : ”fewer priority levels available than there are task periods”, similar to the
idea of a number of users with very similar priority and limited resolution around
it. In [17], a solution was pointed by creating an exponential grid to distribute
the priorities increasing the resolving power around a certain desired area, very
similar to what we intended by designing the Sigmoid operator. Finally, [18]
presents how the low output resolution can a↵ect negatively to the utilization of
resources, as it would alter the best possible decisions, for this case a logarith-
mic grid is presented. This studies are focused on the final priority value without
taking into account the relationship of the input of the prioritization system and
its output. In our work we understand how are the system states (input to the
priority operator) a↵ected by the limitation on resolution, this allows to modify
the system accordingly to the desired resolving power behavior.

7 Future work

This study is a mathematical understanding of the operators in the fairshare
prioritization scheduling. it allows to establish boundaries on the mathematical
behavior of the functions, however, it would be desired to confront the results
with the Karma [7], system: To establish a simulation environment in which all
the operators ares tested in a close to real situation, with di↵erent output reso-
lutions, tree models (di↵erent target values, target tree shapes and depths) and
sources of system noise (as presented in [6]). In this context it would interesting
to study a possible adaptive operator: a dynamic recommendation of the best
suited operator and minimum output resolution depending on the overall state
of the system.

We also understand that it would be interesting to test the Relative and Sig-
moid operator family on the SLURM scheduling system. Our studies reflect that
these operators may have a better resolving power than the SLURM operator,
while similar general characteristics. Bringing those conclusion to SLURM, which
has a di↵erent data pipeline than Karma, would bring light on the compatibility
of our operators with other scheduling strategies.

In a di↵erent line of thinking, as it was presented in [7], the Karma prioriti-
zation engine can be used to deal with scenarios that are not strictly concerned
about the ordering of elements, but also about the magnitude of the priority
values produced by the system. It would be desirable to understand what is
the impact of the di↵erent operator output value distribution on this magnitude
aware systems.

72

Priority Operators for Fairshare Scheduling 19

8 Conclusions

We achieved a deeper understanding on the role of the priority operators in the
fairshare prioritization scheduling. We established their core definition and the
desired characteristics that emanate from the studied problem. This was followed
by the review of the existing operators and the contribution of a new one: The
Sigmoid operator.

To evaluate the desired characteristics we established a set methods and
mathematical proofs that allow to test the compliance of the existing and future
operators. Following this methods, all the presented operators were tested deter-
mining which ones complied with the desired characteristics. The results: While
the Relative, Relative-n, Sigmoid, Sigmoid-n and SLURM operators comply with
all of them, the Absolute and Combined does not on some of them.

At this point our study moved into another dimension, understanding the
impact of the limitation in output resolution on the whole prioritization. The first
contribution was a three step methodology to evaluate its impact on the resolving
power of each operator: the study of the input density, input local density and
significant job size. We reviewed the potential of the di↵erent possibilities and
understood the need to go through the three steps in order to have first, an
overall view; second, a local detailed understanding of the operator behavior in
all its input domain; and finally, a real world quantification of the relationship
between output resolution and resolving power of each operator.

By using this methodology, we were able to compare all the listed operators.
We established that the Sigmoid-2 is the one which, in overall, has a better
resolving power with less output resolution, being the best in situations of bal-
ance and over target. In the case of under target the Relative-2, SLURM and
Combined operators are the ones with a better resolving power with low output
resolution (although very close to the Sigmoid-2). We would like to highlight
that the SLURM operator, taken from the SLURM scheduling system, performs
average in the balance and over target situations. One interesting conclusion is
that the Sigmoid family, a contribution of this paper, presents the best overall
characteristics as a fairshare priority operator.

Finally, this paper establishes a set of research lines to bring these results
into the Karma prioritization system.

Acknowledgments

The authors extend their gratitude to Daniel Espling for prior work and tech-
nical support, Cristian Klein for feedback and Tomas Forsman for technical
assistance. Financial support for the project is provided by the Swedish Gov-
ernment’s strategic research e↵ort eSSENCE and the Swedish Research Council
(VR) under contract number C0590801 for the project Cloud Control.

73

20 Gonzalo P. Rodrigo, Per-Olov Östberg, Erik Elmroth

References

1. Kay, J., Lauder, P.: A fair share scheduler. Communications of the ACM 31 (1)
(1988) 44–55

2. Yoo, A., Jette, M., Grondona, M.: SLURM: Simple Linux Utility for Resource
Management. In Feitelson, D., Rudolph, L., Schwiegelshohn, U., eds.: Job Schedul-
ing Strategies for Parallel Processing. Volume 2862 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg (2003) 44–60

3. Maui Cluster Scheduler: http://www.adaptivecomputing.com/products/open-
source/maui/, January 2014.

4. Foster, I., Kesselman, C.: The grid: blueprint for a new computing infrastructure.
Morgan Kaufmann (2004)

5. Elmroth, E., Gardfjäll, P.: Design and evaluation of a decentralized system for
Grid-wide fairshare scheduling. In H. Stockinger et al, ed.: Proceedings of e-Science
2005, IEEE CS Press (2005) 221–229

6. Östberg, P-O. and Espling, D., Elmroth, E.: Decentralized scalable fairshare
scheduling. Future Generation Computer Systems - The International Journal
of Grid Computing and eScience 29 (2013) 130–143

7. Östberg, P-O. and Elmroth, E.: Decentralized prioritization-based management
systems for distributed computing. In: eScience (eScience), 2013 IEEE 9th Inter-
national Conference on, IEEE (2013) 228–237

8. Slurm: Multifactor priority plugin - simplified fair-share formula. https://

computing.llnl.gov/linux/slurm/priority_multifactor.html (January 2014)
9. Rodrigo, G.P.: Proof of compliance for the relative operator on the proportional

distribution of unused share in an ordering fairshare system. http://www8.cs.

umu.se/

~

gonzalo/ShareDemonstration.pdf (January 2014) (To be published as
a technical report).

10. Rodrigo, G.P.: Establishing the equivalence between operators. http://www8.cs.
umu.se/

~

gonzalo/EquivalenceDemonstration.pdf (January 2014) (To be pub-
lished as a technical report).

11. Swegrid: Swegrid organization. http://snicdocs.nsc.liu.se/wiki/SweGrid

(January 2014)
12. Espling, D., Östberg, P-O. and Elmroth, E.: Integration and evaluation of decen-

tralized fairshare prioritization (aequus) decentralized scalable fairshare schedul-
ing. (2013) (Submitted for publication).

13. Jackson, D., Snell, Q., Clement, M.: Core algorithms of the maui scheduler. In:
Job Scheduling Strategies for Parallel Processing, Springer (2001) 87–102

14. CERN: It services - batch service. http://information-technology.web.cern.

ch/services/batch (January 2014)
15. LSF: Fairshare scheduling. http://www.ccs.miami.edu/hpc/lsf/7.0.6/admin/

fairshare.html (January 2014)
16. Lehoczky, J., Sha, L., Ding, Y.: The rate monotonic scheduling algorithm: Exact

characterization and average case behavior. In: Real Time Systems Symposium,
1989., Proceedings., IEEE (1989) 166–171

17. Sha, L., Lehoczky, J.P., Rajkumar, R.: Task scheduling in distributed real-time
systems. In: Robotics and IECON’87 Conferences, International Society for Optics
and Photonics (1987) 909–917

18. Lehoczky, J.P., Sha, L.: Performance of real-time bus scheduling algorithms. ACM
SIGMETRICS Performance Evaluation Review 14 (1) (1986) 44–53

74

Paper III

A2L2: An Application Aware Flexible HPC Sche-
duling Model for Low-Latency Allocation

Gonzalo P. Rodrigo, Per-Olov Östberg, Erik Elmroth, and Lavanya
Ramakrishnan

In Proceedings of the 8th International Workshop on Virtualization Techno-
logies in Distributed Computing, pp. 11-19. ACM, 2015.

A2L2: an Application Aware Flexible HPC Scheduling
Model for Low-Latency Allocation

Gonzalo P. Rodrigo, Per-Olov Östberg,
Erik Elmroth

Dept. Computing Science, Umeå University
SE-901 87, Umeå, Sweden

{gonzalo, p-o, elmroth}@cs.umu.se

Lavanya Ramakrishnan
Lawrence Berkeley National Lab

Berkeley, CA 94720, USA
lramakrishnan@lbl.gov

ABSTRACT
High-performance computing (HPC) is focused on providing
large-scale compute capacity to scientific applications. HPC
schedulers tend to be optimized for large parallel batch jobs
and, as such, often overlook the requirements of other scien-
tific applications. In this work, we propose a cloud-inspired
HPC scheduling model that aims to capture application per-
formance and requirement models (Application Aware - A2)
and dynamically resize malleable application resource al-
locations to be able to support applications with critical
performance or deadline requirements. (Low Latency allo-
cation - L2). The proposed model incorporates measures
to improve data-intensive applications performance on HPC
systems and is derived from a set of cloud scheduling tech-
niques that are identified as applicable in HPC environ-
ments. The model places special focus on dynamically mal-
leable applications; data-intensive applications that support
dynamic resource allocation without incurring severe perfor-
mance penalties; which are proposed for fine-grained back-
filling and dynamic resource allocation control without job
preemption.

Categories and Subject Descriptors
D4.1 [Operating Systems]: Process Management—Sche-
duling

Keywords
Scheduling; job; HPC; malleable; applications; low-latency

1. INTRODUCTION
High-performance computing (HPC) and cloud comput-

ing are paradigms focused on large-scale resource provision-
ing through aggregation of resources in data centers. Al-
though similar at high level, the paradigms have fundamen-
tal di↵erences in system objectives and target applications
that a↵ect the design of their infrastructure and schedulers.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the US Govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
VTDC’15, June 15 - 16, 2015, Portland, OR, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3573-7/15/06...$15.00
DOI: http://dx.doi.org/10.1145/2755979.2755983 .

HPC systems serve scientific applications, traditionally com-
posed of tightly coupled parallel jobs and use batch schedu-
lers focused on system utilization [5]. Cloud computing of-
fers variable, on-demand compute capacity to run di↵erent
types of applications that often face great variability in load
and require resource and infrastructure elasticity [4]. As the
data-intensive applications that are common in cloud work-
loads [31] are becoming increasingly common in HPC [40], a
trend towards increased overlap between the paradigms can
be observed.

In this work, we focus on scientific applications in HPC
systems and, among these, in particular on data-intensive
applications. As this application type is characterized by
minimal communication between tasks and I/O centric per-
formance models [41], application input data can often be
rearranged among the processing nodes without a↵ecting
application result or performance (as in, e.g., MapReduce
applications [9]). This property allows us to dynamically
change application resource allocations without incurring
significant performance penalties (lost work or low resource
utilization). We call these applications dynamically mal-
leable and observe that they provide schedulers interesting
opportunities for increased scheduling performance: appli-
cation malleability provides schedulers the ability to make
small adjustments to the size of jobs, which allows for tighter
packing of job in backfilling (improved resource utilization).
In addition, the ability to downsize jobs allows schedulers
to temporarily free (some of the) resources allocated to dy-
namically malleable applications, which can be used to make
room to schedule time-critical jobs with short response times.
This enables allocation of resources to run event-synchronized
computations (e.g., real-time processing of data from exter-
nal experiments) without advance reservations of resources
(known to reduce resource utilization [1]).

However, this approach also o↵er challenges: in order to
e�ciently alter application resource assignments, schedulers
require application-level control to adapt to resource changes
[34]. Also, to allow schedulers to decide on resource alloca-
tions aimed at a specific performance target, users should
provide performance expectations rather than resource es-
timations (e.g., execution deadlines instead of job runtime
estimations [12]). In addition, data-intensive applications
can expect high performance improvements from data lo-
cality (data on compute nodes) [34]. This is hard to real-
ize on HPC systems that typically provide high-performance
shared (distributed) file systems rather than local node stor-
age [26]. Finally, today’s batch schedulers do not capture
the performance and requirement models of data-intensive

77

HPC Cloud
Applications Batch, data-intensive, parallel tightly coupled jobs. Batch jobs, data-intensive applications, services.
Platform Bare metal. Bare metal, virtualization, execution frameworks.
Hardware Homogeneous (not in new systems [8]), low-latency

networks, Burst Bu↵er or I/O nodes.
Heterogeneous, commodity, large RAM, storage on
node.

Target High Utilization, low wait times, low cost. Availability, no wait for services, low cost.
Technique Job ordering, FCFS, backfilling, monolithic, static

partition.
Placement, feedback, elasticity, migration, mono-
lithic, static partition, two-level, shared state.

Table 1: Applications, objectives, and scheduler techniques in HPC and cloud environments.

applications, often resulting in sub-optimal decisions in sche-
duling of data-intensive applications on HPC systems.

In this paper we present A2L2, an Application Aware
flexible HPC scheduling model for Low Latency allocation
of resources for jobs that adapts cloud techniques to tackle
HPC scheduling challenges. The model is considered ap-
plication aware as it is built on a two-level cloud inspired
model [33] in which each type of application has an individ-
ual scheduler that captures its performance and requirement
models. The model is considered to be flexible as it uses dy-
namically malleable applications to backfill resource gaps
(later described as flexible backfill technique). Finally, the
model aims to support low-latency allocations by using re-
source expropriation to free resources for applications with
time-sensitive or real-time needs. The main contributions of
this paper are:

• A2L2, an HPC application-aware scheduling model that
makes use of dynamically malleable applications to en-
able flexible backfilling, low-latency scheduling of jobs,
and performance-oriented scheduling of data-intensive
applications.

• A discussion of dynamic management and control of
malleable applications in HPC environments.

• A comparative discussion of scheduling techniques appli-
cable to both HPC and cloud computing.

The remainder of this paper is structured as follows. Sec-
tion 2 presents the potential and challenges of managing
dynamically malleable applications. Section 3 provides a
comparative overview of cloud and HPC resource provision-
ing (focused on scheduling and placement mechanisms) and
identifies a set of key infrastructure and application charac-
teristics that impact design of such mechanisms. Section 4
presents A2L2, a proposed scheduling model aimed to im-
prove the flexibility and e�ciency of HPC environments by
use of cloud-style placement techniques. Section 5 provides
a summary of identified challenges that must be overcome
to realize this model and proposes a way forward in this
work. Section 6 outlines a brief summary of related work
and Section 7 concludes the paper.

2. DYNAMICALLY MALLEABLE
Data-intensive applications are typically organized as work-

flows and characterized by significant I/O operations. They
benefit from parallelism but are not necessarily tightly cou-
pled. In this work, we focus on what we call dynamically
malleable applications, where input data can be divided in
a minimum unit (quantum) and output data only depends
on a specific operation or set of operations on that input

data. The processing of each quantum is independent and,
as a consequence, processing n quanta will require the same
amount of compute time (under the same resource circum-
stances), no matter whether the computations are done in
parallel or serially [41]. Additionally, as each quantum is
independent, runtime changes in the job geometry are pos-
sible without losing intermediate results (dynamically mal-
leable). However, the application performance model di↵ers
from that of tightly coupled parallel batch jobs and appli-
cation level knowledge is required to control application re-
source allocations.

2.1 Performance model
The performance of data-intensive applications is by def-

inition I/O bound. In cloud environments, distributed file
systems that divide and place data on compute nodes are
commonly used to achieve high throughput for data-intensive
applications [34]. As such, there are two possible perfor-
mance models depending on the relationship between the
size of the input data and the compute node:

• Storage-centric: Input data does not fit in node mem-
ory and is staged onto the local node storage system.
Hadoop [34] is an example of an execution framework
built around compute node storage based distributed
file systems.

• Memory-centric: The input data of all application stages
fit in node memory and no local node storage is needed.
Spark [42] is an example of an execution framework
specialized for this kind of applications that creates a
memory-based distributed file system.

As I/O operations on memory are faster, memory-centric
applications o↵er an overall better data processing through-
put than storage-centric applications. However, the input
dataset size is limited by the total available node mem-
ory, memory-centric applications may require more compute
nodes to process the same input dataset. If not enough nodes
are available, memory-centric applications have to load more
input data on the main memory of the compute nodes, re-
ducing system overall performance [42].

However, the key performance enhancement mechanism
of data intensive clouds environments (distributed storage)
cannot natively be used in HPC as compute nodes typically
do not have local storage and large fast shared file systems
may not o↵er optimal performance for an application’s data
access patterns [26]. In Section 4.3.2 we present how A2L2
attempts to bring cloud’s performance improvement tech-
niques to HPC.

78

2.2 Flexibility and management
The degree of parallelism can be changed in dynamically

malleable applications, impacting the overall runtime ac-
cordingly. As we present in the next sections, this flexi-
bility can be used to meet scheduler objectives. However,
this flexibility requires applications to be aware of changes
in resources state and availability, and claim and release re-
sources as needed during runtime. In data intensive cloud
frameworks (e.g. Hadoop [34]), each job has a master task
controlling the rest. The frameworks communicate with the
master tasks to coordinate changes in resource allocation.

The scientific community has developed similar tools for
certain dynamically malleable applications in HPC, but they
are not integrated with resource management system sche-
dulers and, as a consequence, do not support graceful re-
scaling of applications during runtime.

3. HPC AND CLOUD SYSTEMS
This work proposes a new scheduling model that focuses

on application-aware scheduling to enable low-latency (on-
demand) scheduling of applications in HPC environments.
The first step is to understand what cloud techniques en-
able these features, and compare these to the regular HPC
scheduling. Table 1 summarizes the observed di↵erences and
similarities between HPC and cloud scheduling.

3.1 Batch centric HPC scheduling
HPC systems focus on computing needs of scientific appli-

cations. The traditional HPC application is often described
as a large simulation that run tightly coupled parallel jobs
[35], allocates large numbers of nodes for long periods of
time, and requires low-latency synchronized inter-process
communication across nodes. Lately however, data anal-
ysis applications have become more present on HPC sys-
tems. These applications do not have strong coupling re-
quirements, are easier to parallelize, and may in many cases
be dynamically malleable (the degree of parallelism can be
adapted at runtime) [9].

HPC system architectures are deigned to support the sci-
entific applications characteristics (e.g., provide a high
enough degree of parallelism to simulate a certain model)
and to o↵er large amounts of compute capacity to large user
bases while keeping the cost per compute time-unit low. The
resulting systems are typically very e�cient in terms of ope-
rational, energy, and procurement costs, but the support for
diverse applications models is often limited. Typically HPC
infrastructures are relatively homogeneous (albeit less so in
newer systems [8]), have no storage on compute nodes, and
use synchronized networks and high performance parallel
storage systems.

HPC schedulers use a combination of techniques aimed
to satisfy the system’s objectives. First Come First Serve
(FCFS) algorithms execute jobs in arrival order until no
more jobs are waiting, or there are not enough available re-
sources to run the first job in the queue [15]. FCFS is often
complemented with Backfilling [27], a scheduling technique
aimed to increase utilization by searching in the waiting
queue for jobs whose resource requirements and estimated
runtimes can be met using available resources without de-
laying the start time of jobs found earlier in the waiting
queue. Job prioritization is achieved by adding techniques
such as fairshare [29] or priority queues [5]. Also, jobs can

Figure 1: Scheduling of five batch jobs with FCFS
and backfilling. Job J5 can be backfilled while J4
can not (as it would delay J3, which arrived before).

incorporate checkpointing techniques that can be used to
restart jobs with reduced lost work after preemption.

Figure 1 illustrates scheduling of jobs using FCFS with
backfilling. Each box represents a job (y-axis represents the
fraction of the total nodes required by the job; x-axis repre-
sents the estimated runtime). By following FCFS, J3 starts
after J2, leaving a significant amount of resources free to run
J4 or J5 when they arrive. The backfilling algorithm finds
that, according to its estimated runtime, J4 would end after
J3’s estimated start time, while J5 would end before. As a
consequence J5 is backfilled. Classic batch schedulers take
into account the requested resources (width) and estimated
runtime (length) of jobs in a static way. This limits backfill-
ing as it can only be performed if a match with a correspond-
ing geometry can be fit with a resource gap. AL2L aims to
address this limitation by adapting dynamically malleable
jobs to the available resource windows.

3.2 Application-aware cloud placement
Cloud computing emerged as a way to sell spare compute

capacity from under-utilized infrastructures [4] and has since
evolved into a model that o↵ers variable, on-demand, ac-
countable, and instantly available resources to run di↵erent
types of applications using di↵erent delivery service models
[23], e.g. Infrastructure as a service (IaaS), platform as a
service (PaaS) and software as a service (SaaS). Services,
batch jobs, and data-intensive applications are some of the
types of applications that are common in cloud data centers
[31]. Typically, parallel cloud applications are not as tightly
coupled as in HPC environments [38] and very variable levels
of utilization of the allocated resources are observed [13].

The NIST definition of cloud computing captures its ob-
jectives: no wait time to provide resources to services, dy-
namically increase/decrease resources allocated to an appli-
cation, and support for diverse applications and platforms at
the lowest cost possible. To comply with this definition cloud
computing brings a series of required infrastructure charac-
teristics to the data center: commodity hardware, nodes
with large RAM capacity (to support multiple VMs on the
same node) and high-speed networks (but not low-latency,
like in HPC systems). Cloud applications also present var-
ious scheduling challenges. Some applications must be run
immediately or at deadlines (e.g., services), allocation on-
demand imposes the use of prediction methods to perform
resource planning [4] and the performance of an application
is hard to predict as it depends on the code itself, the sup-
ported load and the presence of other applications hosted on

79

the same resources [43]. However, cloud environments typi-
cally also o↵er opportunities and tools not present in HPC
environments. For example, applications can be migrated
between compute nodes [4] and applications not fully using
their allocated resource capacity can sometimes be over-
booked without noticeable performance degradation [36].

Scheduling in cloud datacenter starts as a placement de-
cision. When more capacity is needed by an application it
can be allocated a larger share of its host machine (vertical
elasticity) or increases the number of instances of the appli-
cation on other machines (horizontal elasticity). Placement,
to optimize a set of target functions (e.g., energy e�ciency,
resource utilization, quality of service) while satisfying a set
of constraints (e.g., memory or a�nity requirements of a
VM) by assigning resources to applications, is an NP hard
problem [24].

Compared to HPC environments, the variability of cloud
applications can be seen to bring di↵erent performance mod-
els and requirements to the cloud data center; e.g., batch
jobs can wait to be executed, while services can not; batch
job performance is measured by execution time while ser-
vices focus on quality of service aspects such as response
time. There are di↵erent approaches to capture applica-
tions models in a scheduler [33], with A2L2, we borrow a
construct from cloud environments: two level scheduling,
i.e. there is one scheduler per application type that inter-
act with a single a resource manger which governs how the
resources are assigned to each scheduler. In Section 4.1 we
present the model and its underlying challenges.

3.3 HPC trends
Currently, the HPC community is striving towards Exa-

scale, i.e. systems with Exaflop peak compute capacity.
When reaching this level of capacity the number of cores
per node is expected to increase significantly [6] while node
memory capacity and I/O latency and bandwidth are ex-
pected to not be able grow at the same pace (due to power
consumption and technology limitations respectively). Thus,
the gap between CPU and I/O capacity is expected to in-
crease, and I/O to become a performance cap for certain
applications. As a consequence, a set of solutions for reduc-
ing I/O limitations are being investigated for HPC systems:

• Burst bu↵ers on selected compute nodes: solid state
memory that behaves like a cache level between main
memory and the external IO systems, with larger ca-
pacity than the node main memory. The I/O latency of
the burst bu↵er is expected to be significantly smaller
than parallel file system’s. Applications may decide to
use this burst bu↵er as a local storage system [21].

• I/O dedicated nodes present a similar function to the
burst bu↵ers but out of the compute nodes, higher
capacity and slightly larger latency [6].

Burst bu↵ers can bring fast storage to (or close to) HPC
nodes (i.e. dedicated analysis nodes), which can increase
the performance of data-intensive applications as they are
often I/O limited. As a side e↵ect, these proposed changes
reduce the di↵erences between cloud and HPC environments
as some nodes present storage and many cloud infrastruc-
tures already incorporate SSDs on their systems [16]. In
Section 4.3.2 we explore the idea of using burst bu↵ers In
the context of the A2L2 model o increase data-intensive ap-
plication performance in HPC environments.

Figure 2: A2L2 with three schedulers. The low-
latency scheduler requests expropriated resources,
which are taken from the dynamically malleable ap-
plications.

4. A2L2 SCHEDULING MODEL
Section 3 compares HPC and cloud systems, identifying

the methods used in cloud to tackle the challenges induced
by the presence of data-intensive applications. In this sec-
tion we discuss techniques to realize A2L2: a cloud-inspired
scheduling model aimed to enable application-aware schedu-
ling of heterogeneous workloads, that takes advantage of the
presence of dynamically malleable applications to improve
utilization and enable low-latency allocation of resources.

4.1 Application-aware scheduling
The core of the AL2L approach is a two level resource

manager model that serves multiple schedulers at the same
time. Each application is managed by a scheduler specific
for that application type that captures the application’s per-
formance characteristics and requirements. The resource
manager controls the resource allocation among schedulers.
An example with three schedulers is presented in Figure 2.
This schema is a hybrid between the two level and shared
state approaches presented in [33] to schedule heterogeneous
workloads (services, batch jobs, workflows) on cloud infras-
tructures. At the core of our approach is the resource ma-
nager, which requires the following system characteristics to
enable application-aware scheduling and the other features
presented in this work:

• More than one scheduler uses the resource manager.

• The resource manager o↵ers a stable and consistent
view of the state of the resources to all schedulers.

• All resource allocations follow a request and o↵er re-
source protocol jointly controlled by the resource ma-
nager and the schedulers. Periodically the resource
manager allow all the schedulers to request resources
at the same time. This process has two stages. First,
schedulers request free resources to run an application
and, if not all requests can be satisfied, a conflict re-
solving method is applied (described later). Then, the
resource borrowing phase starts: schedulers are o↵ered
any remaining free resources to increase the allocation
of already running applications. Borrowed resources
are considered free in the next request phase and it
is the responsibility of the allocating scheduler to de-
allocate borrowed resources when needed.

80

• Dynamically malleable application schedulers must sup-
port resource expropriation - de-allocation of resources
at the request of the resource manager.

• Schedulers can request expropriated resources to run
time-critical applications if there are not enough free
resources to run it.

In our model, each scheduler is isolated from the rest,
their decisions are made solely on their individual perfor-
mance models and policies. The resource manager controls
the resources assigned to each scheduler. This control is en-
forced by individual decision to solve resource request con-
flicts between schedulers (Conflicts arise when there are not
enough resources to satisfy all the resource requests). The
aggregated e↵ect of all decisions is intended to produce a re-
source sharing policy. These are some of the resource sharing
policies to be explored in our work:

• Weighted random: Probabilities of each scheduler are
configured. Schedulers with higher probability will
submit more jobs regardless of their resource time con-
sumption.

• Fairshare: Each scheduler should be able to use a pre-
defined share of the resource time for a given time
window (e.g. 20% of the produced core-hours in one
day).The resource manager keeps track of the past con-
sumed resource time and decisions are aimed to bring
the system to the target shares [29]. Schedulers’ shares
can be adjusted to di↵erent values on periods of time
to enforce a temporary higher presence of certain types
of applications.

This two-level model may produce clear benefits. Al-
though at the core designed for a cloud type usage scenario,
high utilization is enforced by the schedulers, that are built
around the HPC applications performance models and the
objectives of high utilization and capacity. The flexible back-
filling may increase the utilization over classic backfilling. At
the same time, the model separates how applications share
the system from application specific policies (classic batch
schedulers aggregate the application specific priorities dis-
solving both the e↵ect of resource sharing policies and indi-
vidual application sharing).

In addition, this model supersedes the batch scheduler as
it allows application specific scheduling, i.e. introduction
of new types of applications do not require a change of the
whole scheduler system (merely the addition of a new sche-
duler for that application type). Also, it provides a level
of fault-tolerance as the parts are decoupled and can eas-
ily be replicated. It aims to enforce a usage share among
applications through the di↵erent policies on the resource
conflict resolution. Finally, flexible backfilling and resource
expropriation has great potential for increasing resource uti-
lization and adding capabilities to the system (more details
in the next sections).

4.2 Dynamic allocation of resources
Classic HPC jobs receive resource allocations that remain

constant throughout the entire job make-span. In contrast,
cloud systems are capable of increasing and reducing the
resource allocations of applications to cope with variations
in load and demand. Use of dynamically malleable applica-
tions in dynamic resource management has the potential for

Figure 3: J1 and J2 borrow free resources (flexi-
ble backfilling). J2 returns the borrowed resources
when the batch scheduler requests them.

Figure 4: Resources expropriated from two jobs. Af-
ter the streamed job is completed, the expropriated
resources are returned.

disrupting how HPC resources are scheduled and enabling
more flexible backfilling and resource expropriation for time-
critical applications.

4.2.1 Flexible backfilling

As presented in Section 3.1, resource fragmentation is a
problem that can occur to batch schedulers. We propose
the use of flexible backfilling: resource allocations for dy-
namically malleable jobs are increased (with little perfor-
mance penalty) to use non-allocated resources without de-
laying other applications. At the end of the resource request
phase, the resource manager re-o↵ers unused (but not bor-
rowed) resources to schedulers as borrowable resources that
can be used to increase the allocations of already running
applications. However, as borrowed resources are still con-
sidered available (free) for new applications allocations, the
resource manager may require schedulers to de-allocate bor-
rowed resources at any time. The theoretical result of this
technique is illustrated in Figure 3, where applications with
changing resource allocations can be seen in contraposition
to the classic batch scheduler example of Figure 1. In this
example, two dynamically malleable applications (stacked
on the upper part of the figure) reduce their resource allo-
cations, which are used to schedule a streamed job. Once
the job finishes, one of the applications from which the re-
sources were expropriated is still running and the resources
are returned to that application. Remaining resources are
given to another dynamically malleable application.

4.2.2 Low-latency allocation

Many scientific experiments produce large amounts of data
that are stored for later analysis on HPC systems. However,
some experiments would benefit from processing data while

81

the experiment is running. This can be achieved by align-
ing the experiment with an advance reservation of HPC re-
sources. However, the use of advance reservations frequently
leads to low utilization as they cannot fit the exact experi-
ment time window [1]. Instead, a special type of job submis-
sion that aims for jobs to be run within a short time period
is needed (equivalent to the on-demand nature of cloud):
low-latency allocation of resources.

Low-latency allocation of resources are added to our model
by using resource expropriation for temporary partial pre-
emption of dynamically malleable jobs resources. A step-by-
step example of this technique can be followed in Figure 2
and its corresponding e↵ect observed in Figure 4: the low-
latency scheduler requests resources from the resource mana-
ger, which expropriates resources from the dynamically mal-
leable applications scheduler. The resource manager evalu-
ates what resource reduction will impact application perfor-
mance objectives the least and enforce a decision on the two
applications. The resources are then used by the low-latency
application. Once this application terminates, the expropri-
ated resources are returned to the original scheduler. This
scheduler re-assigns these resources to the dynamically mal-
leable applications.

In batch jobs, partial preemption brings the negative ef-
fect of lost work. However, the technique is only used on dy-
namically malleable applications whose performance model
allows their resource pool to be resized with a small per-
formance penalty. If a processing node is stopped, its pro-
duced output data can be stored and its remaining input
data transferred to another node to be processed. The over-
all performance of the job decreases but no work is lost. The
application can continue with reduced resources, but if more
resources are allocated to it, its performance may return to
the pre-expropriation level.

This technique is inspired by cloud techniques such as
Brownout [17] (graceful degradation of application quality of
service as a means to cope with increased resource load) and
overbooking [36] (packing physical hosts with VMs which
do not fully utilize their allocation to better utilize the re-
sources).

4.3 Dynamically malleable management
Dynamically malleable jobs do not have a hard constraint

on the required resources. A larger resource allocation im-
plies a shorter running time and vice versa. In classical HPC
scenarios, users specify the required resource allocation and
estimated runtime for jobs. This poses two challenges. First,
users have to estimate the resource allocation and conse-
quent runtime for an application whose performance is hard
to predict (and thus, easy to under/overestimate). Second,
it eliminates the freedom of the scheduler to adapt the job’s
allocation to achieve overall targets.

We propose performance-based management for dynami-
cally malleable applications: users provide deadline by when
the job should be completed and application schedulers have
the freedom to dynamically allocate resources to application
so deadlines are met. The benefits for the scheduling model
are the following:

• Eliminate user over/under estimations: Workflows run
multiple phases with di↵erent operations on resources
where performance might be unknown. It is complex
to estimate the required resources and runtime for each
phase. However, if the user provides a deadline, the

scheduler can adapt the resource allocation dynami-
cally and avoid over/under allocation.

• Malleable applications can be used for flexible backfill-
ing or as a source of expropriated resources.

4.3.1 Deadline based resource management

In the proposed A2L2 approach, an specific scheduler will
exist for dynamically malleable applications. This schedu-
ler has two goals: to control and manage dynamically mal-
leable jobs (job manager) and calculate the resources needed
for these jobs to meet their deadlines (resource calculator).
The job manager is meant to be built over one of the exist-
ing cloud execution frameworks for dynamically malleable
applications (e.g., Hadoop, Spark). It will have the respon-
sibility of controlling the job workers on each allocated node,
manage the distribution of input data among them, allocate
new resources to a job, and de-allocate them if needed. The
scheduling functions will interact with the job manager to
free resources or the possibility of using borrowed ones.

The resource calculator will inform the job manager on
the resources allocated to the jobs to meet the user provided
deadlines. Job deadlines are a well known model for express-
ing an execution target [12]. Deadlines can be synchronized
with real life events and, hence, easy to understand by the
user. We propose to study what methodology should be used
to perform these calculations and enforce them on dynam-
ically malleable workflows. As presented in previous work
[12], it implies translating the overall deadline to per-stage
deadlines and estimating the resource performance for each
stage. The resources performance estimation is used to cal-
culate the required resource size to meet the deadline of a
running stage workflow. Finally, a job manager uses the
calculation to alter the resource set assigned to the stage.

Finally, the dynamic malleable scheduler must support
resource expropriation and resource borrowing. One of the
challenges will be to determine the best heuristic to calculate
what resources and from which jobs should be released to
minimize the impact in terms of job’s execution slowdown.
A similar heuristic will be investigated to determine the jobs
that should receive extra resources in case the scheduler can
borrow resources.

4.3.2 Performance enhancements

The throughput of dynamically malleable applications highly
depend on the system’s I/O performance. In cloud environ-
ments, data locality is often leveraged though distributed
file systems [16]. However, in most HPC systems, compute
nodes use remote parallel file systems and have little or no
local storage on nodes. Application performance will depend
on the data access patterns [26] and the network capacity
of the data center. This is especially important in Exascale
systems as I/O operations will be more expensive at that
level [6].

Another performance concern comes from A2L2’s ability
to dynamically change the resource allocation of applica-
tions. In this case, although the performance penalty is
smaller than that of full preemption of jobs, the time to
recreate the application data on nodes may a↵ect the over-
all performance.

In order to address these two challenges we propose to
use memory-centric approaches when possible. For storage-
centric applications, burst bu↵ers and I/O nodes can host a
filesystem, equivalent to the distributed file system used in

82

cloud environments. Application data has to be preloaded
on nodes but, once loaded, the application read/write pat-
terns will not impact the performance of the I/O network
or the central parallel file system [19]. Also, this distributed
file system can be used in a semi-persistent way: if a node
is expropriated from an application, the file system is not
erased. Once the node is free and the application is restored,
the application can keep using the near storage system. The
only performance penalty will come from checking what in-
put data has been already processed. This penalty can be
neutralized by using eventual data consistency techniques
on the distributed file system.

5. CHALLENGES AND FUTURE WORK
Based on the A2L2 model outlined in this paper, further

research poses three immediate challenges: further detailed
modeling of the di↵erent components of the scheduling envi-
ronment, implementation of the proposed model, and eval-
uation of the quality of scheduling produced. These chal-
lenges are embodied in the various system components for
an HPC resource management schema with batch job sche-
duling, dynamic resource allocation on a per job basis, appli-
cation level control, resource borrowing, flexible backfilling,
resource expropriation, low-latency job allocation, workflow
aware scheduling, and data locality enforcement for data-
intensive applications on HPC.

The work and research on these challenges cannot be per-
formed as a single line of work, but the aggregation of three
parallel lines of work: the first is to characterize the workload
of a set of reference systems both on HPC and cloud work-
loads. We plan to study traces from systems at NERSC (the
US National Energy Research Computing Center), the Pa-
rallel Workload Archive [10], HPC2N (the High Performance
Computing Center North, Sweden), and Google cluster data
[39]. This line of investigation has two purposes: performing
a comparison between HPC and cloud (to verify the feasi-
bility of using cloud techniques in HPC) and producing a
model for synthetic workloads to test our scheduler. Our
previous works has initiated this line of research with the
workload analysis of two NERSC systems with an special
focus on its evolution throughout the systems’ lifetime [32].

The second research line aims at building a resource per-
formance model that includes node compute capacity, mem-
ory, network, and I/O capabilities. In particular, analysis of
the e↵ect on the memory and I/O models versus the pres-
ence of node burst bu↵ers, as well as the expected Exascale
increases in the gap between capacity of processing units
and I/O systems, are topics for study.

The third line aims at creating and evaluating three com-
ponents: a scheduling suite (implementing our model), a
resource emulator (based on the resource model) and a work-
load emulator (that captures characteristics of workload mo-
del). The scheduling suit will be based on community open
source scheduling software and will be developed for real
system deployment. The resource emulator will wrap the
scheduler to run it in a test environment. The workload emu-
lator will model di↵erent types of job submissions and user
behaviors. This approach will support the implementation
test and algorithms evaluation processes. Each model fea-
ture will be evaluated comparing its performance (in terms
of utilization, turnaround time or enabled capacity) against
a reference scenario using a classical HPC scheduling algo-

rithms. The ultimate goal of this e↵ort to produce a software
suite to run over a real HPC system.

6. RELATED WORK
Applications whose resource allocation needs are variable

are not new to HPC centers. In 1996 Feitelson and Rudolph
[11] did a classification that identifies three types of jobs
with di↵erent degrees of flexibility: moldable, malleable, and
evolving.

Moldable applications [7, 18], are those whose degree of
parallelism can be chosen just before they are started but
do not support any changes after that [11]. A scheduler can
decide on the geometry of a moldable job by considering the
current state of the resources, the geometry of waiting jobs,
and the system’s target functions: e.g., high utilization, or
short turnaround time. However, unlike dynamically mal-
leable applications, moldable applications don’t allow any
changes of their resource allocations once allocated. This
disables any further scheduling decisions for them (apart
from abortion of the job).

Malleable applications support changes in their resource
set during execution time without stopping execution [11].
An example are MPI malleable applications [37, 22]. We
define dynamic malleable applications as a subset of of the
malleable applications characterized for being data intense
and organized in a workflow

These applications requires scheduler support as they need
to be aware of any resource o↵ering or reduction. This sup-
port has appeared in highly distributed works such as grid
scheduling [28, 3] but not in pure HPC schedulers. In this
work, we propose a model exclusively for HPC systems, with
a fixed size resource set and no possibility to schedule jobs
to external resources.

Evolving jobs have resource requirement changes through-
out their execution time [11] and the system must satisfy
them or their execution will not continue. Some grid schedu-
ling systems o↵er support to these type of applications [20].
HPC schedulers have limited support for evolving jobs [30]
and it is based on advance resource reservations. Our model
proposal for HPC o↵ers a possibility of freeing resources
from dynamically malleable applications to serve evolving
jobs or other rigid jobs with higher priority without using
advance reservations.

Finally, multi-level scheduling approaches have been in-
vestigated in the past in the grid [2, 25] and cloud commu-
nities [14, 33]. The resulting schedulers cannot be directly
applied to a HPC system. However, the two-level architec-
ture of A2L2 is inspired by some of the models presented in
that work.

7. CONCLUSIONS
This paper presents a comparative analysis between HPC

and cloud scheduling methods and extrapolates on insights
from this comparison to outline A2L2: a scheduling model
for HPC systems that takes application characteristics into
consideration when realizing low-latency, on-demand alloca-
tion of resources in HPC environments. The first insight of
this analysis is that applications with di↵erent performance
models are present in both HPC and cloud environments.
To address this, we propose a multi-level HPC scheduler
model that separates application specific policies from how
compute time is shared by application types. The second in-

83

sight is the proposal to use the flexible nature of dynamically
malleable jobs to enable di↵erent features in HPC schedu-
ling. The presence of jobs whose resource allocations can
be scaled up and down during execution, with very low per-
formance penalties, allows both a more flexible backfilling
model (where job sizes are changed to free space for back-
filling jobs as well as to improve the fit of backfilling jobs to
resource allocation gaps) and use of resource expropriation
in order to allow admission of time-critical application jobs
on-demand.

8. ACKNOWLEDGMENTS
This work is funded by the Swedish Government’s strate-

gic e↵ort eSSENCE, the Swedish Research Council (VR)
under contract number C0590801 for the project Cloud Con-
trol, the European Union’s Seventh Framework Programme
under grant agreement 610711 (CACTOS), and the O�ce of
Science, O�ce of Advanced Scientific Computing Research
(ASCR) of the U.S. Department of Energy under Contract
Number DE-AC02-05CH11231.

9. REFERENCES
[1] M. A. Bauer, A. Biem, S. McIntyre, N. Tamura, and

Y. Xie. High-performance parallel and stream
processing of x-ray microdi↵raction data on
multicores. In Journal of Physics: Conference Series,
volume 341, page 012025. IOP Publishing, 2012.

[2] F. Berman, R. Wolski, H. Casanova, W. Cirne,
H. Dail, M. Faerman, S. Figueira, J. Hayes,
G. Obertelli, J. Schopf, et al. Adaptive computing on
the grid using AppLeS. IEEE Transactions on Parallel
and Distributed Systems, 14(4):369–382, 2003.

[3] J. Buisson, O. Sonmez, H. Mohamed, W. Lammers,
and D. Epema. Scheduling malleable applications in
multicluster systems. In 2007 IEEE International
Conference on Cluster Computing, pages 372–381.
IEEE, 2007.

[4] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and
I. Brandic. Cloud computing and emerging it
platforms: Vision, hype, and reality for delivering
computing as the 5th utility. Future Generation
computer systems, 25(6):599–616, 2009.

[5] N. Capit, G. Da Costa, Y. Georgiou, G. Huard,
C. Martin, G. Mounié, P. Neyron, and O. Richard. A
batch scheduler with high level components. In IEEE
International Symposium on Cluster Computing and
the Grid. CCGRID 2005, volume 2, pages 776–783.
IEEE, 2005.

[6] Y. Chen. Towards scalable I/O architecture for
exascale systems. In Proceedings of the 2011 ACM
international workshop on many-task computing on
grids and supercomputers, pages 43–48. ACM, 2011.

[7] W. Cirne and F. Berman. A model for moldable
supercomputer jobs. In Proceedings 15th International
Parallel and Distributed Processing Symposium. IEEE,
2001.

[8] J. Dongarra et al. The international exascale software
project roadmap. International Journal of High
Performance Computing Applications, 2011.

[9] J. Ekanayake, S. Pallickara, and G. Fox. Mapreduce
for data intensive scientific analyses. In IEEE Fourth

International Conference on eScience, pages 277–284.
IEEE, 2008.

[10] D. Feitelson. Parallel workloads archive.
71(86):337–360, 2007. http:
//www.cs.huji.ac.il/labs/parallel/workload.

[11] D. G. Feitelson and L. Rudolph. Toward convergence
in job schedulers for parallel supercomputers. In Job
Scheduling Strategies for Parallel Processing, pages
1–26. Springer, 1996.

[12] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and
R. Fonseca. Jockey: guaranteed job latency in data
parallel clusters. In Proceedings of the 7th ACM
european conference on Computer Systems, pages
99–112. ACM, 2012.

[13] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel.
The cost of a cloud: research problems in data center
networks. ACM SIGCOMM computer communication
review, 39(1):68–73, 2008.

[14] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. H. Katz, S. Shenker, and I. Stoica.
Mesos: A platform for fine-grained resource sharing in
the data center. In Networked Systems Design and
Implementation, (NSDI), volume 11, pages 22–22,
2011.

[15] M. Hovestadt, O. Kao, A. Keller, and A. Streit.
Scheduling in HPC resource management systems:
Queuing vs. planning. In Job Scheduling Strategies for
Parallel Processing, pages 1–20. Springer, 2003.

[16] S.-H. Kang, D.-H. Koo, W.-H. Kang, and S.-W. Lee.
A case for flash memory ssd in hadoop applications.
International Journal of Control and Automation,
6(1):201–210, 2013.

[17] C. Klein, M. Maggio, K.-E. Årzén, and
F. Hernández-Rodriguez. Brownout: Building more
robust cloud applications. In Proceedings of the 36th
International Conference on Software Engineering,
pages 700–711. ACM, 2014.

[18] C. Klein and C. Perez. An RMS architecture for
e�ciently supporting complex-moldable applications.
In 2011 IEEE 13th International Conference on High
Performance Computing and Communications
(HPCC), pages 211–220. IEEE, 2011.

[19] S. Krishnan, M. Tatineni, and C. Baru.
myHadoop-Hadoop-on-Demand on Traditional HPC
Resources. San Diego Supercomputer Center Technical
Report TR-2011-2, University of California, San
Diego, 2011.

[20] W. Lammers. Adding support for new application types
to the Koala grid scheduler. PhD thesis, Citeseer, 2005.

[21] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross,
G. Grider, A. Crume, and C. Maltzahn. On the role of
burst bu↵ers in leadership-class storage systems. In
IEEE 28th Symposium on Mass Storage Systems and
Technologies (MSST), pages 1–11. IEEE, 2012.

[22] K. Maghraoui, T. J. Desell, B. K. Szymanski, and
C. A. Varela. Dynamic malleability in iterative mpi
applications. In 7th Int. Symposium on Cluster
Computing and the Grid, pages 591–598, 2007.

[23] P. Mell and T. Grance. The NIST definition of cloud
computing. 2011.

84

[24] K. Mills, J. Filliben, and C. Dabrowski. Comparing
vm-placement algorithms for on-demand clouds. In
IEEE Third International Conference on Cloud
Computing Technology and Science (CloudCom),
pages 91–98. IEEE, 2011.

[25] H. Mohamed and D. Epema. Koala: a co-allocating
grid scheduler. Concurrency and Computation:
Practice and Experience, 20(16):1851–1876, 2008.

[26] E. Molina-Estolano, M. Gokhale, C. Maltzahn,
J. May, J. Bent, and S. Brandt. Mixing hadoop and
hpc workloads on parallel filesystems. In Proceedings
of the 4th Annual Workshop on Petascale Data
Storage, pages 1–5. ACM, 2009.

[27] A. Mu’alem and D. Feitelson. Utilization,
predictability, workloads, anduser runtime estimates
in scheduling the IBM SP2 with backfilling. IEEE
transactions on parallel and distributed systems,
12(6):529–543, 2001.

[28] A. P. Nascimento, A. C. Sena, C. Boeres, and V. E.
Rebello. Distributed and dynamic self-scheduling of
parallel mpi grid applications. Concurrency and
Computation: Practice and Experience,
19(14):1955–1974, 2007.

[29] P.-O. Östberg, D. Espling, and E. Elmroth.
Decentralized scalable fairshare scheduling. Future
Generation Computer Systems - The International
Journal of Grid Computing and eScience, 29:130–143,
2013.

[30] S. Prabhakaran, M. Iqbal, S. Rinke, C. Windisch, and
F. Wolf. A batch system with fair scheduling for
evolving applications. In 2014 43rd International
Conference on Parallel Processing (ICPP), pages
351–360. IEEE, 2014.

[31] B. P. Rimal, E. Choi, and I. Lumb. A taxonomy and
survey of cloud computing systems. In Fifth
International Joint Conference on INC, IMS and IDC,
pages 44–51. IEEE, 2009.

[32] G. Rodrigo, P.-O. Östberg, E. Elmroth, K. Antypass,
R. Gerber, and L. Ramakrishnan. HPC system
lifetime story: Workload characterization and
evolutionary analyses on NERSC systems. In The 24th
International ACM Symposium on High-Performance
Distributed Computing (HPDC), 2015.

[33] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and
J. Wilkes. Omega: flexible, scalable schedulers for
large compute clusters. In Proceedings of the 8th ACM
European Conference on Computer Systems, pages
351–364. ACM, 2013.

[34] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The hadoop distributed file system. In 2010 IEEE
26th Symposium on Mass Storage Systems and
Technologies (MSST), pages 1–10. IEEE, 2010.

[35] A. Snavely, X. Gao, C. Lee, L. Carrington, N. Wolter,
J. Labarta, J. Gimenez, and P. Jones. Performance
modeling of HPC applications. Advances in Parallel
Computing, 13:777–784, 2004.

[36] L. Tomás and J. Tordsson. Improving cloud
infrastructure utilization through overbooking. In
Proceedings of the 2013 ACM Cloud and Autonomic
Computing Conference, page 5. ACM, 2013.

[37] G. Utrera, J. Corbalan, and J. Labarta. Implementing
malleability on MPI jobs. In Proceedings of the 13th

International Conference on Parallel Architectures and
Compilation Techniques, pages 215–224. IEEE
Computer Society, 2004.

[38] L. Wang, J. Tao, M. Kunze, A. C. Castellanos,
D. Kramer, and W. Karl. Scientific cloud computing:
Early definition and experience. In High Performance
Computing and Communications, volume 8, pages
825–830, 2008.

[39] J. Wilkes. More Google cluster data. Google research
blog, Nov. 2011. Posted at
http://googleresearch.blogspot.com/2011/11/

more-google-cluster-data.html.
[40] R. Williams, I. Gorton, P. Greenfield, and A. Szalay.

Guest editors’ introduction: Data-intensive computing
in the 21st century. Computer, 41(4):0030–32, 2008.

[41] J. Wolf, D. Rajan, K. Hildrum, R. Khandekar,
V. Kumar, S. Parekh, K.-L. Wu, and A. Balmin. Flex:
A slot allocation scheduling optimizer for mapreduce
workloads. In Middleware 2010, pages 1–20. Springer,
2010.

[42] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: cluster computing
with working sets. In Proceedings of the 2nd USENIX
conference on Hot topics in cloud computing, pages
10–10, 2010.

[43] X. Zhang, E. Tune, R. Hagmann, R. Jnagal,
V. Gokhale, and J. Wilkes. Cpi 2: CPU performance
isolation for shared compute clusters. In Proceedings
of the 8th ACM European Conference on Computer
Systems, pages 379–391. ACM, 2013.

85

Paper IV

ScSF: A Scheduling Simulation Framework

Gonzalo P. Rodrigo, Erik Elmroth, Per-Olov Östberg, and Lavanya
Ramakrishnan

In 21th Workshop on Job Scheduling Strategies for Parallel Processing, Accep-
ted, Springer International Publishing, 2014.

ScSF: A Scheduling Simulation Framework

Gonzalo P. Rodrigo?, Erik Elmroth, Per-Olov Östberg, and
Lavanya Ramakrishnan+

Department of Computing Science, Ume̊a University, SE-901 87, Ume̊a Sweden
Lawrence Berkeley National Lab, 94720, Berkeley, California+

{gonzalo,elmroth,p-o}@cs.umu.se,lramakrishnan@lbl.gov

Abstract. High-throughput and data-intensive applications are increa-
singly present, often composed as workflows, in the workloads of current
HPC systems. At the same time, trends for future HPC systems point to-
wards more heterogeneous systems with deeper I/O and memory hierar-
chies. However, current HPC schedulers are designed to support classical
large tightly coupled parallel jobs over homogeneous systems. Therefore,
There is an urgent need to investigate new scheduling algorithms that
can manage the future workloads on HPC systems. However, there is
a lack of appropriate models and frameworks to enable development,
testing, and validation of new scheduling ideas.
In this paper, we present an open-source scheduler simulation framework
(ScSF) that covers all the steps of scheduling research through simula-
tion. ScSF provides capabilities for workload modeling, workload genera-
tion, system simulation, comparative workload analysis, and experiment
orchestration. The simulator is designed to be run over a distributed
computing infrastructure enabling to test at scale.
We describe in detail a use case of ScSF to develop new techniques to
manage scientific workflows in a batch scheduler. In the use case, such
technique was implemented in the framework scheduler. For evaluation
purposes, 1728 experiments, equivalent to 33 years of simulated time,
were run in a deployment of ScSF over a distributed infrastructure of
17 compute nodes during two months. Finally, the experimental results
were analyzed in the framework to judge that the technique minimizes
workflows’ turnaround time without over-allocating resources.
Finally, we discuss lessons learned from our experiences that will help
future researchers.

1 Introduction

In recent years, high-throughput and data-intensive applications are increasingly
present in the workloads at HPC centers. Current trends to build larger HPC
systems point towards heterogeneous systems and deeper I/O and memory hi-
erarchies. However, HPC systems and their schedulers were designed to support
large communication-intensive MPI jobs run over uniform systems.

? Work performed while working at the Lawrence Berkeley National Lab

89

2 Gonzalo P. Rodrigo et al.

The changes in workloads and underlying hardware have resulted in an ur-
gent need to investigate new scheduling algorithms and models. However, there
is limited availability of tools to facilitate scheduling research. Current simulator
frameworks largely do not capture the complexities of a production batch sche-
duler. Also, they are not powerful enough to simulate large experiment sets, or
they do not cover all its relevant aspects (i.e., workload modeling and generation,
scheduler simulation, and result analysis).
Scheduling simulators: Schedulers are complex systems and their behavior is
the result of the interaction of multiple mechanisms that rank and schedule jobs,
while monitoring the system state. Many scheduler simulators, like Alea [14],
include state of art implementations of some of these mechanisms, but do not
capture the interaction between the components. As a consequence, hypotheses
tested on such simulators might not hold in real systems.
Experimental scale: A particular scheduling behavior depends on the configu-
rations of the scheduler and characteristics of the workload. As a consequence,
the potential number of experiments needed to evaluate a scheduling improve-
ment is high. Also, experiments have to be run for long time to be significant
and have to be repeated to ensure representative results. Unfortunately, current
simulation tools do not provide support to scale up and run large numbers of
long experiments. Finally, workload analysis tools to correlate large scheduling
result sets are not available.

In this paper, we present ScSF, a scheduling simulation framework that covers
the scheduling research life-cycle. It includes a workload modeling engine, a syn-
thetic workload generator, an instance of Slurm wrapped in a simulator, a results
analyzer, and an orchestrator to coordinate experiments run over a distributed
infrastructure. This framework will be published as open source, allowing user
customization of modules. We also present a use case that illustrates the use of
the scheduling framework for evaluating a workflow-aware scheduling algorithm.
Our use case demonstrates the modeling of the workload of a peta-scale system,
Edison at NERSC (National Energy Research Scientific Computing Center).
We also describe the mechanics of implementing a new scheduling algorithm in
Slurm and running experiments over distributed infrastructures.

Specifically, our contributions are:

– We describe the design and implementation of scalable scheduling simula-
tor framework (ScSF) that supports and automates workload modeling and
generation, Slurm simulation, and data analysis. ScSF will be published as
open source.

– We detail a case study that works as a guideline to use the framework to
evaluate a workflow-aware scheduling algorithm.

– We discuss the lessons learned from running scheduling experiments at scale
to help scheduling researchers in the future.

The rest of the paper is organized as follows. In Section 2, we present the
state of art of scheduling research tools and the previous work supporting the
framework. The architecture of ScSF and the definition of its modules are pre-
sented in Section 3. In Section 4 we describe the steps to use the framework

90

Fig. 1: Slurm is composed by three daemons: slurmctld (scheduler), slurmd (compute
nodes management and supervision), and slurmdbd (accounting). A plug-in structure
wraps the main functions in those daemons.

to evaluate a new scheduling algorithm. In Section 5, we present some lessons
learned while using ScSF at scale. We present our conclusions in Section 6.

2 Background

In this section, we describe the state of art and challenges in scheduling research.

2.1 HPC schedulers and Slurm

The scheduling simulation framework is aimed to support research on HPC sche-
duling. The framework incorporates a full production scheduler and is modified
to include new scheduling algorithms to be evaluated.

Di↵erent options were considered for the framework scheduler. Moab (sche-
duler) plus Torque (resource manager) [7], LSF [11], and LoadLeveler [13] have
been quite popular in HPC centers. However, their source code is not easily
available which makes extensibility di�cult. The Maui cluster scheduler is an
open-source precursor of Moab [12], however it does not support current sys-
tem needs. Slurm is one of the most popular recent workload managers in HPC
(used in 5 of top 10 HPC systems [2]). It was originally developed at Lawrence
Livermore National Laboratory [20], now mantained by SchedMd [2], and it is
available as open source. Also, there are publicly available projects to support
simulation in it [19]. Hence, our simulator framework is based on Slurm.

As illustrated in Figure 1, Slurm is structured as a set of daemons that
communicate over RPC calls:
slurmctld is the scheduling daemon. It contains the scheduling calculation func-
tions, hosts the waiting queue, receives batch job submissions from users, and
distributes work across the instances of slurmd.
slurmd is the worker daemon. Ther can be one instance per compute node or
a single instance (front-end mode) managing all nodes. It places and runs work
in compute nodes and reports the resources status to slurmctld. The simulator
uses front-end mode.
sbatch is a command that wraps the slurm RPC API to submit jobs to slurm-
ctld. Most commonly used by users.

Slurm has a plug-in architecture. Many of the internal functions are wrapped
by C APIs loaded dynamically depending on the configuration files of Slurm
(slurmctld.conf, slurmd.conf).

91

4 Gonzalo P. Rodrigo et al.

The Slurm simulator wraps Slurm to emulate HPC resources, emulate user’s
job submission, and speed up Slurm’s execution. We extended previous work
from the Swiss Supercomputing Center (CSCS, [19]), based on the original one
by the Barcelona Supercomputing Center (BSC, [16]). Our contributions increase
Slurm’s speed up while maintaining determinism in the simulations, and adds
workflow support. These improvements are presented in Section 3.5.

2.2 HPC workload analysis and generation

ScSF includes the capacity to model system workloads and generate synthetic
ones accordingly. Workload modeling starts with flurries elimination (i.e., events
that are not representative and skew the model) [10]. The generator models each
job variable with the empirical distribution [15], i.e., it recreates the shape of job
variable distributions by constructing a histogram and CDF from the observed
values.

2.3 Related work

Previous work [18] proposes three main methods of scheduling algorithms re-
search: theoretical analysis, execution on a real system, and simulation. The
theoretical analysis is limited to produce boundary values on the algorithm, i.e.
best and worst cases, but does not reason on the regular performance. Also,
since continuous testing of new algorithms on large real systems is not possible,
simulation is the option chosen in our work.

Available simulation tools do not cover the full cycle of modeling, genera-
tion, simulation, and analysis. Also, public up-to-date simulators or workload
generators are scarce. As an example, our work is based on the most recent peer
reviewed work on Slurm Simulation (CSCS, [19]), and we had to improve its
synchronization to speed up its execution. For more grid-like workloads, Alea
[14] is an example of a current HPC simulator. However, it does not include a
production simulator in its core and does not generate workloads.

For workload modeling, function fitting and user modeling are recognized
methods [9]. However, the ScSF’s workload model is based on empirical distri-
butions [15], as it produces good enough models and does not require specific
information about system users. Also, this work modeling methods are based
on the experience of our previous work on understanding workload evolution of
HPC systems life cycle [17] and job heterogeneity in HPC workloads [6].

In workload generation, previous work compares close and open loop ap-
proaches [21], i.e. taking into account or not the scheduling decisions to calculate
the jobs arrival time. ScSF is used in environments with reduced user informa-
tion, which is needed to create closed-loop models. Thus, ScSF uses an open-loop
workload generation model and fill and load mechanisms (Section 3.4) to avoid
under and over job submission.

Finally, other workloads and models [8] are available, but are less representa-
tive than the one in the use case (Cray XC30 supercomputer, deployed in 2013
with 133,824 cores and 357 TB of RAM). Still, ScSF can run simulations on the
models of such systems.

92

Fig. 2: ScSF schema with green color representing components developed in this work
and purple representing modified and improved components.

3 Architecture and simulation process

Figure 2 shows the ScSF’s architecture around a MySQL database that stores
the framework’s data and meta-data. Running experiments based on a reference
system requires modeling its workload first by processing the system’s scheduling
logs in the workload model engine. This model is used in the experiments to
generate synthetic workloads with similar characteristics to the original ones.

A simulation process starts at the description of the experimental setup in
an experiment definition, including workload characteristics, scheduler configu-
ration, and simulation time. The experiment runner processes experiment defi-
nitions and orchestrates experiments accordingly. First, it invokes the workload
generator to produce a synthetic workload of similar job characteristics (size,
inter arrival time) as the real ones in the reference system chosen. This work-
load may include specific jobs (e.g., workflows) according the the experiment
definition. Next, the runner invokes the simulator that wraps Slurm to increase
its execution pace and emulate the HPC system and users interacting with it.
The simulator sets Slurm’s configuration according to the experiment definition
and emulates the submission of the synthetic workload jobs. Slurm schedules the
jobs over the virtual resources until the last workload job is submitted. At that
moment, the simulation is considered completed.

Completed simulations are processed by the workload analyzer. The analysis
on a simulation result covers the characterization of jobs, workflows, and system.
This module includes tools to compare experiments to di↵erentiate the e↵ects
of scheduling behaviors on the workload.

In the rest of this section we present the components of the framework in-
volved in these processes.

3.1 Workload model engine

A workload model is composed of statistical data that allows creating syn-
thetic jobs that with characteristics similar to the original ones. To create this
model, first, the workload model engine extracts batch job’s variable values from
Slurm or Moab scheduling logs including wait time, allocated CPU cores, re-
quested wall clock time, actual runtime, inter-arrival time, and runtime accu-
racy (runtime

requestedWallClockT ime). Jobs with missing information (e.g. start time), or

93

Fig. 3: Empirical distribution constructions for job variables: calculating a cumulative
histogram and transforming it into a mapping table.

trace type ”single”: regular experiment.”grouped”: experiments aggregated.
subtraces list of single experiments related to this grouped one.
system name of system to model workload after

workflow policy ”period”: one workflow workflow period s. ”percent”: work-
flow share corehours are workflows. ”no”: no workflows.

manifest list list of workflows to appear in the workload.
workflow handling workflows submission in workload. ”single”: pilot job.”multi”:

chained jobs”. ”manifest”: workflow-aware job
start date submit time of first job valid for analysis.

preload time s time to prepend to the workload for stabilization.
workload duration s workload stops at start date+ workload duration s.

seed string to init random number generators.

Table 1: Experiment definition fields

individual rare and very large jobs that would skew the model (e.g. system test
jobs) are filtered out.

Next, the extracted values are used to produce the empirical distributions
[15] of each job variable as illustrated in Figure 3. A normalized histogram
is calculated on the source values. Then, the histogram is transformed into a
cumulative histogram, i.e., each bin represents the percentage of observed values
that are less or equal to the upper boundary of the bin. Finally, the cumulative
histogram is transformed into a table that maps probability ranges on a value:
e.g. in Figure 3, bin (10� 20] becomes a [0.3, 0.8) probability range as its value
is 80% and its left’s neighboring bin value is 30%. The probability ranges map
to to the mid value of the bin range that they correspond to, e.g., 15 is the mid
value of (10 � 20]. This model is then ready to produce values, e.g., a random
number (0.91) is mapped on the table, obtaining 25.

Each variable’s histograms is calculated with specific bin sizes adapted to its
resolution. By default, the bin size for the request job’s wall clock time is one
minute (Slurm’s resolution). The corresponding bin size for inter-arrival time is
one second as that is the timestamp log resolution. Finally, for the job CPU core
allocation, the bin size is the number of cores per node of the reference system,
as in HPC systems node sharing is usually disabled.

3.2 Experiment definition

An experiment definition governs the experimental conditions in an experiment
process, configuring the scheduler, workload characteristics, and experiment du-
ration. A definition is composed by a scheduler configuration file and an exper-
iments database entry (Table 1) that includes:

94

ScSF: A Scheduling Simulation Framework 7

1 {"tasks": [

2 {"id":"SWide", "cmd":"./W.py", "cores":480, "rtime":360.0},
3 {"id":"SLong", "cmd":"./L.py", "cores":48, "rtime":1440.0,

4 "deps": ["SWide"]}]}

Fig. 4: WideLong workflow manifest in JSON format.

trace type and subtraces: The tag ”single” identifies those experiments which
are meant to be run in the simulator. A workload will be generated and run
through the simulator for later analysis. The experiments with trace type ”grouped”
are definitions that list the experiments that are the di↵erent repetitions of the
same experimental conditions in the ”subtraces” field.
system model: selects which system model is to be used to produce the work-
load in the experiment.
workflow policy: controls presence of workflows in the workload. If set to ”no”,
workflows are not present. If set to ”period” a workflow is submitted periodi-
cally once every workflow period s seconds. If set to ”percentage”, workflows
contribute workflow share of the workload core hours.
manifest list: List of pairs (share, workflow) defining the workflows present in
the workload: e.g., {(0.4 Montage.json), (0.6 Sipht.json)} indicates that 40%
of the workflows will be Montage, and 60% Sipht . The workflow field points to
a JSON file specifying the structure of the workflow. Figure 4 is an example of
the such file. It includes two tasks, the first running for 10 minute, allocating
480 cores (wide task); and the second running for 40 minutes, allocating 48 cores
(long task).The SLong task requires SWide to be completed before it starts.
workflow handling: This parameter controls the method to submit workflows.
The workload generators supports workflows submitted as chained jobs (multi),
in which workflow tasks are submitted as independent jobs, expressing their
relationship as job completion dependencies. Under this method, workflow tasks
allocate exactly the resources they need, but intermediate job wait times might
be long, increasing the turnaround time. Another approach supported is the
pilot job (single), in which a workflow is submitted as a single job, allocating
the maximum resource required within the workflow for its minimum possible
runtime. The workflow tasks are run within the job, with no intermediate wait
times, and thus, producing shorter turnaround times. However, it over-allocates
resources, that are left idle at certain stages of the workflow.
start date, preload time s, and workload duration s: defines the dura-
tion of the experiment workload. start date sets the submit time of the first
job in the analyzed section of the workload, which will span until (start date
+ workload duration s). Before the main section, a workload of preload time s
seconds is prepended, to cover the cold start and stabilization of the system.
Random seed: this alphanumeric string is used to initialize the random gen-
erator within the workload generator. If two experiments definitions have the
same parameters, including the seed, their workloads will become identical. If
two experiment definitions have the same parameters, but a di↵erent seed, their
workloads will become similar in overall characteristics, but di↵erent as individ-
ual jobs (i.e. repetitions of the same experiment). In general, repetitions of the

95

Fig. 5: Steps to run an experiment (numbers circled indicate order) taken by the exper-
iment runner component. Once step seven is completed, the step sequence is re-started.

same experiment with di↵erent seeds are subtraces of a ”grouped” type experi-
ment.

3.3 Experiment runner

The experiment runner is an orchestration component that controls the work-
load generation and scheduling simulation. It invokes the workload generator
and controls through SSH a VM that contains a Slurm simulator instance. Fi-
gure 5 presents the experiment runner operations after being invoked with a
hostname or IP of a Slurm simulator VM. First, the runner reboots the VM
(step 0) to clear processes, memory, and reset the operative system state. Next,
an experiment definition is retrieved from the database (step 1) and the work-
load generator produces the corresponding experiment’s workload file (step 2).
This file is transferred to the VM (step 4) together with the corresponding Slurm
configuration files (obtained in step 3). Then, the simulation inside the VM (step
5) is started, which will stop after the last job of the workload is submitted in
the simulation plus extra time to avoid including the system termination noise
in the results. The experiment runner monitors Slurm (step 6), and when it ter-
minates, the resulting scheduler logs are extracted and inserted in the central
database (step 7).

Only one experiment runner can start per simulator VM, however multi-
ple runners manage multiple VMs in parallel, which enables a simple scaling
mechanism to run experiments concurrently.

3.4 Workload generation

The workload generator in ScSF produces synthetic workloads representative of
real system models. The workload structure is presented in Figure 6: All work-
loads start with a fill phase, which includes a group of jobs meant to fill the
system. The fill job phase is followed by the stabilization phase, which include
24 hours of regular jobs controlled by a job-pressure mechanism to ensure that
there are enough jobs to keep the system utilized. The stabilization phase cap-
tures the cold start of the system, and it is ignored in later analysis. The next

96

Fig. 6: Sections of a workload: fill, stabilization, experiment, and drain. Presented with
an the associated utilization that this workload produced in the system.

stage is the experiment phase that runs for a fixed time (72 hours in the fi-
gure) and includes regular batch jobs complemented by the experiment specific
jobs (in this case workflows). Although not present in the workload, after the
workload is completely submitted, the simulation runs for extra time (drain pe-
riod, configured in the simulator) to avoid the presence of noise from the system
termination in the experiment section.

In the rest of this section, we present all the mechanisms involved in detail.

Job generation: The workload generator produces synthetic workloads ac-
cording to an experiment definition. The system model set in the definition is
combined with a random number generator to produce synthetic batch jobs.
The system model is chosen among those produced by the workload model en-
gine (Section 3.1). Also, the random generator is initialized with the experiment
definition’s seed. Finally, the workload generator also supports the inclusion of
workflows according to the experiment definition (Section 3.2).

The workload generator fidelity is evaluated by modeling NERSC’s Edison
and comparing one year of synthetic workload with the system jobs in 2015. The
characteristics of both workloads are presented in Figure 7, where the histogram
and CDFs for inter arrival time, wall clock limit and allocated number of cores
are almost identical. For runtime there are small di↵erences in the histogram
that barely impact the CDF.

Filling and load mechanisms: Users of a HPC system submit a job load that
fills the systems and creates a backlog of jobs that induces an overall system wait
time. The filling and load mechanisms steer the job generation to reproduce this
phenomena.

The load mechanism ensures that the size of the backlog of jobs does not
change significantly. It induces a job pressure (submitted over produced work)
close to a configured value, usually 1.0. Every time a new job is added to the
workload, the load mechanism calculates the current job pressure t as P (t) =
coreHoursSubmitted
coreHoursProduced(t) where coreHoursProduced = t ⇤ coresInTheSystem. If

P (t) < 1.0 new jobs are generated and also inserted in the same submit time
until P (t) � 1.0. If P (t) � 1.1, the submit time is kept as reference, but the job
is discarded, to avoid overflowing the system. The e↵ect of the load mechanism
is observed in Figure 9, where the utilization raises to values close to one for the
same workload parameters as in Figure 8.

97

Fig. 7: Job characteristics in a year of Edison’s real workload (darker) vs. a year of
synthetic workload (lighter). Distributions are similar.

Increasing the job pressure raises system utilization but does not induce the
backlog of jobs and associated overall wait time that is present in real systems. As
an example, Figure 12a presents the median wait time of the jobs submitted in
every minute of the experiment using the load mechanism of Figure 9. Here, the
system is utilized but the jobs wait time is very short, only increasing to values
of 15 minutes for larger jobs (over 96 core hours) at the end of the stabilization
period (vs. the four hours intended).

The fill mechanism inserts an initial job backlog equivalent to the experi-
ment configured overall wait time. The filling jobs characteristics guarantee that
they will not end at the same time or allocate too many cores. As a consequence,
the scheduler is able to fill gaps left when they end. Figure 10 shows an experi-

Fig. 8: No Job pressure mechanism, No Fill:
Low utilization due not enough work.

Fig. 9: Job pressure 1.0, No Fill: Low uti-
lization due to no initial filling jobs.

Fig. 10: Job pressure 1.0, Fill with large
jobs: initial falling spikes.

Fig. 11: Job pressure 1.0, Fill with small
jobs: Good utilization, more stable start.

98

Fig. 12: Median wait time of job’s submitted in each minute. a: Job pressure 1.0, not
fill mechanism, and thus no wait time baseline is present. b: Job pressure 1.0, fill
mechanism configured to induce four hours of wait time baseline.

ment in which the fill job allocations are too big, their allocation is 33,516 cores
(1/4 of the system CPU cores count). Every time a fill job ends (t = 8, 9, 10, and
11h), one drop in the utilization is observed because the scheduler has to fill a
too large gap with small jobs. To avoid this, the filling mechanism calculates a fill
job size that induces the desired overall wait time while not producing utilization
drops. Fill job size calculation is based on a fixed inter-arrival time, the capacity
of the system, and the desired wait time. Figure 11 shows the utilization of a
workload which fill jobs are calculated following such method. They are submit-
ted in 10 second intervals creating the soft slope in the figure. Figure 12b shows
the wait time evolution for the same workload, sustained around four hours after
the fill jobs are submitted.

Customization: The workload generator includes classes to define user job
submission patterns. Trigger classes define mechanisms to decide the insertion
times pattern, such as: periodic, alarm (at one or multiple time stamps), re-
programmable alarm), or random. The job pattern is set as a fixed jobs se-
quence, or a weighted random selection between patterns. Once a generator is
integrated it is selected by setting a special string in the workflow policy field of
the experiment definition.

3.5 Slurm and the Simulator

Slurm’s version 14.3.8 was chosen as the scheduler of the framework: It is one
of the most popular open-source workload managers in HPC. Also, as a real
scheduler, it includes the e↵ect and interaction of mechanisms such as prio-
rity engines, scheduling algorithms, node placement algorithms, compute nodes
management, job submissions system, and scheduling accounting. Finally, Slurm
includes a simulator to use it on top of an emulated version of an HPC system,
submitting a trace of jobs to it, and accelerating its execution. This tool enables
experimentation without requiring the use of a real HPC system.

In this section, we present a brief introduction to the simulator’s structure
and the improvements that we performed on it.

99

Fig. 13: Slurm simulator architecture.
Slurm system calls are replaced to
speed-up execution. Scheduling is syn-
chronized. Job submission is emulated.

Fig. 14: Simulated time running during RPC
communications delay resource de-allocation
compromising backfilling’s job planning and Job
B start.

Architecture: The architecture of Slurm and its simulator is presented in Fi-
gure 13. The Slurm daemons (slurmctld and slurmd) are wrapped by the emu-
lator. Both daemons are dynamically linked by the sim func library which adds
the required functions to support the acceleration of Slurm’s execution. Also,
slurmd is compiled including a resource and job emulator. On the simulator
side, the sim mgr controls the three core functions of the system: execution time
acceleration, synchronization of the scheduling processes, and emulation of the
job submission. These functions are described bellow.
Time acceleration: In order to accelerate the execution time, the simulator de-
couples the Slurm binaries from the real system time. Slurm binaries are dynami-
cally linked with the sim func library, replacing the time, sleep, and wait system
calls. Replaced system calls use an epoch value controlled by the time controller.
For example, if the time controller sets the simulated time to 1485551988, any
calls to time will return 1485551988 regardless of the system time. This reduces
the wait times within Slurm: e.g., if the scheduling is configured to run once
every 30 simulated second, it may run once every 300 real time milliseconds.
Scheduling and simulation synchronization: The original simulated time
pace set by CSCS produces small speed ups for large simulated systems. However,
increasing the simulated time pace triggers timing problems because of the RPC
nature of Slurm daemon communications. For example, RPC under second real
time latency is measured by Slurm as hundreds of simulated seconds.

Increasing the simulation pace has di↵erent negative e↵ects. First, timeouts
occur triggering multiple RPC re-transmissions degrading the performance of
Slurm and the simulator. Second, job timing determinism degrades. Each time a
job ends, slurmd sends an RPC notification to slurmctld, and its arrival time is
considered the job end time. This time is imprecise if the simulated time increases
during the RPC notification propagation. As a consequence low utilization and
large job (e.g. allocating 30% of the resources) starvation ocurs. Figure 14 details
this e↵ect: A large JobB is to be executed after JobA. However, JobA resources
are not considered free until two sequential RPC calls are completed (end of job
and epilogue), lowering the utilization as they are not producing work. The later
resource liberation also disables JobB from starting but does not stop the jobs

100

ScSF: A Scheduling Simulation Framework 13

that programmed are to start after JobB . As the process repeats, the utilization
loss accumulates and JobB is delayed indefinitely.

The time controller component of the sim mgr was modified to control a syn-
chronization crossbar among the Slurm functions that are relevant to the sche-
duling timing. This solves the described synchronization problems by controlling
the simulation time and avoiding its increase while RPC calls are traveling be-
tween the Slurm daemons.
Job submission and simulation: The job submitter component of the sim mgr
emulates the submission of jobs to slurmctld following the workload trace of the
simulation. Before submitting each job, it communicates the actual runtime (dif-
ferent from the requested one) to the resource emulator in slurmd.

Slurmctld notifies slurmd of the scheduling of a job through an RPC. The
emulator uses the notification arrival time and job runtime (received from sim mgr)
to calculate the job end time. When the job end time is reached, the emulator
forces slurmd to communicate that the job has ended to slurmctld. This process
emulates the job execution and resource allocation.

3.6 Workload analyzer

ScSF includes analysis tools to extract relevant information across repetitions of
the same experiment or to plot and compare results from multiple experimental
conditions.

Value extraction and analysis: Simulation results are processed by the work-
load analyzer. The jobs in the fill, stabilization, and drain phases (Figure 6) are
discarded to then extract (1) for all jobs: wait time, runtime, requested runtime,
user accuracy (estimating the runtime), allocated CPU cores, turnaround time,
and slowdown grouped by jobs sizes. (2) for all and by type of workflow: wait
time, runtime, turnaround time, stretch factor. (3) overall: median job wait time
and mean utilization for each minute of the experiment.

The module performs di↵erent analyses for di↵erent data types. Percentile
and histograms analyze the distribution and trend of the the jobs’ and workflows’
variables. Integrated utilization (i.e., coreHoursProduced/coreHoursExecuted)
measure the impact of the scheduling behavior on the system usage.

Finally, customized analysis modules can be implement and added to the
analysis pipeline.

Repetitions and comparisons: Experiments are repeated with di↵erent ran-
dom seeds to ensure that observed phenomena are not isolated occurrences. The
workload analysis module analyzes all the repetitions together, merging the re-
sults to ease later analysis. Also, experiments might be grouped if they di↵er
only in one experimental condition. The analysis module studies these groups
together to analyze the e↵ect of that experimental condition on the system.
For instance, some experiments are identical except for the workflow submission

101

14 Gonzalo P. Rodrigo et al.

method, which a↵ects the number of workflows that get to execute in each exper-
iment. The module calculates compared workflow turnaround times correcting
any possible results skew derived from the di↵erence in the number of executed
workflows.

Result analysis and plotting: Analysis results are stored in the database
to allow review of visualization using the plotter component. This component
includes tools to plot histograms (Figure 7), box plots, and bar charts on the
median of job’s and workflow’s variables for one or multiple experiments (Fi-
gure 17). It also includes tools to plot the per minute utilization (Figures 8
to 11) and per minute median job’s wait time in an experiment (Figures 12a
and b), which allows to observe dynamic e↵ects within the simulation. Finally,
it also include tools to extract and compare utilization values from multiple
experiments.

4 Scheduling simulation framework use case

In this section, we describe a use case that demonstrates the use of ScSF. The
case study is to, using the simulator, implement and evaluate a workflow-aware
scheduling algorithm [5]. In particular, the use case includes modeling of a real
HPC system, implementing a new algorithm in the Slurm simulator, and the
definition of evaluation experiments. Also, we detail a distributed deployment
of ScSF and present some examples of the results to illustrate the scalability of
our framework.

4.1 Tuning the model

Experiments to evaluate a scheduling algorithm require workload and system
models that are representative. In this use case, NERSC’s Edison is chosen as
the reference system. Its workload is modeled by processing almost four years
of its jobs. Next, a Slurm configuration is defined to imitate Edison’s scheduler
behavior, including: Edison’s resource definition (number of nodes and hardware
configuration) FCFS, backfilling with a depth of 50 jobs once every 30s, and a
multi-factor priority model that takes into account age (older-higher) and job
geometry (smaller-higher). The workload tuning is completed by running a set of
experiments to explore di↵erent job pressure and filling configurations to induce
a stable four hour wait time baseline (observed in Edison).

4.2 Implementing a workflow scheduling algorithm in Slurm

The evaluated algorithm concerns the method to submit workflows to an HPC
system. As presented in Section 3.2, workflows are run as pilot jobs (i.e., single
job over-allocation resources) or chained jobs (i.e., task jobs linked by dependen-
cies supporting long turnaround times). However, the workflow-aware scheduling

102

ScSF: A Scheduling Simulation Framework 15

Set Wf. Submit #Wfs. Wf. Pres. #Pres. Sim. t. #Reps #Exps Agg. Sim. t.
Set0 aware/single/multi 18 Period 1 per wf. 7d 6 324 2268d
Set1 aware/single/multi 6 Period 6 7d 6 648 4536d
Set2 aware/single/multi 6 Share 7 7d 6 756 5292d

Table 2: Summary of experiments run in ScSF.

[5] is a third method that enables per job task resource allocation, while min-
imizing the intermediate wait times. In this section, we present the integration
of the algorithm in ScSF.

The algorithm integration requires to modify Slurm’s jobs submission system,
and include some actions on the job queue before and after scheduling happens.
First, sbatch, Slurm’s job submission RPC, and the internal job record data
structure are extended to support that jobs include a workflow manifest. This
enables workflow-aware jobs to be present as pilot jobs attaching a workflow
description (manifest).

Second, queue transformation actions are inserted before and after FCFS and
backfilling act on it. Before they act, workflow jobs are transformed into task jobs
but keeping the original job priority. When the scheduling is completed, original
workflow jobs are restored. As a consequence, workflow task jobs are scheduled
individually, but, as they share the same priority, the workflow intermediate
waits are minimized.

4.3 Creating the experiments

The workflow-aware scheduling approach is evaluated by comparing its e↵ect on
workflow turnaround time and system utilization with the pilot and chained job
ones. Three versions (one per approach) of experiments are created to compare
the performance of the three approaches under di↵erent conditions.

Table 2 presents the three sets the experiments created. Workflows in set0,
express di↵erent structure properties to study their interaction with di↵erent
approaches. Set1 studies the e↵ect of the approaches on isolated workflows and
includes two synthetic workflows, plus four real (Montage, Sipht, Cybershake,
FloodPlain [4]) submitted with di↵erent periods (0, 1/12h, 1/6h, 1/h, 2/h, 6/h).
Set2 studies the e↵ect of the approaches on systems increasing dominated by
workflows. It includes the same workflows as set1 submitted with di↵erent work-
flow shares (1%, 5%, 10%, 25%, 50%, 75%, 100%). In total, they sum 1728
experiments equivalent to 33 years of simulated time.

Experiments are created and stored using a Python class that is initialized
with all the experiment parameters. Synthetic workflows manifest files are cre-
ated manually following the framework’s manifest JSON format. Real workflow
manifests are created using a workflow generator from the Pegasus project [4]
that captures the characteristics of popular research workflows. ScSF includes a
tool to transform the output of this generator into the expected JSON format.

103

Fig. 15: Schema of the distributed execution environment: VMs containing the Slurm
Simulator are distributed in hosts at LBNL and UMU. Each VM is controlled by an
instance of the experiment runner in the controller host at LBNL.

4.4 Running experiments in scale

1728 individual experiments that sum 33 years of simulated time are required
to run in this use case. Estimating an average speedup of 10x, experiment simu-
lation would require more than three years of real time. In order to reduce the
real time required to complete this work, simulation is parallelized to increase
throughput.

As presented in Section 3, the minimum experiment worker unit is composed
by an instance of the experiment runner component and a VM containing the
Slurm simulator. As shown in Figure 15, parallelization is achieved by running
multiple worker units concurrently. To configure the infrastructure, Virtualbox’s
hypervisor is deployed on six compute nodes at the Lawrence Berkeley National
Lab (LBNL) and 17 compute nodes at Ume̊a University (UMU). Over them,
161 Slurm Simulator VMs are deployed. Each VM allocates two cores, four GB
of RAM, and 20GB of storage. Each compute node has di↵erent configurations
and thus, the number of VMs per host and their performance is not uniform,
e.g., some compute nodes only host two VMs, and some host 15.

All the experiment runners run in a single compute node at LBNL (Ubuntu,
12 cores x 2.8GHz, 36GB RAM). However, VMs are not exposed directly through
their host NIC and, required access from the control node over sshuttle [3]: a
VPN over ssh software that does not required installation in the destination host.
Even if both sites are distant, the network is not a significant source of problem
since the connection between UMU and LBNL traverses two high performance
research networks, Nordunet (Sweden) and ESnet (EU and USA). Latency is
relatively low (170-200ms), data-rate is high (firewall capped ⇡100Mbits/s per
TCP flow), and stability consistent.

4.5 Experimental performance

The experiments wall clock time is characterized as a function of their experi-
mental setup to understand the factors driving simulation speed-up. Figure 16
shows the experiments median runtime of one experiment set, grouped by sche-
duling method, workflow type, and workflow presence.

For the same simulated time, simulations run longer time under the chained
job and workflow-aware approaches compared to pilot job. Also, for the chained
job and aware approaches, experiments run longer time if more workflows are

104

Fig. 16: Median wall clock time for a set of simulation. More complex workloads (more
workflows, large workflows) present longer times. Pilot job approach presents shorter
times. Simulation time is 168 hours (7 days).

present, or the workflows include more task jobs. As individual experiments are
analyzed, longer runtimes, and thus smaller speed-ups, appear to be related to
longer runtime of the scheduling passes because of higher numbers of jobs in the
waiting queue.

In summary, simulations containing numbers of jobs similar to real system
workloads present median runtimes between 10 to 12 hours for 7 days (168h)
of simulated time, or 15x speedup. Speed-up degrades as experiments become
more complex. Speed-ups under 1 are observed for experiments whose large job
count would be hard to manage for a production scheduler (e.g., Montage-75%).
To conclude, the limiting factor of the simulations speed-up is the scheduling
runtime, which, in this use case, depends on the number of jobs in the waiting
queue.

4.6 Analyzing at scale

The analysis of the presented use case required to synthesize the results of 1278
experiments into meaningful, understandable metrics. The tools described in
Section 3.6 supported this task.

As an example, Figure 17 condenses the results of 324 experiments (six rep-
etitions per experiment setting): median workflow runtime speed up (left) and
value (right) observed for Cybershake, Sipht, and Montage, for di↵erent work-
flow shares and scheduling approaches. Results show that chained job workflows
support much longer runtime in all cases, while aware and pilot jobs workflows
show shorter and similar runtimes.

5 Lessons learned

The initial design goal of ScSF was readiness, not scale, and its first deployment
included four worker VMs. As the number experiments and simulation time grew
in the use case (33 years), the resource pool size had to be increased (161 VMs
and 24 physical hosts), even expanding to resources in di↵erent locations. In this

105

Fig. 17: Comparison of median workflow runtime on di↵erent experimental conditions
as speed-up (left), and absolute numbers (right). Data of workflows in 108 experiments.

section, we describe some of the resulting problems and what we learned from
them.
Loss-less experiment restart is needed: As the framework runs longer and
on more nodes, the probability for node reboots becomes higher. In the months
of experiments our resources required rebooting due to power cuts, hypervisor
failures, VM freezes, and system updates (e.g. we had to update the whole cluster
to patch the Dirty Cow exploit [1]).

Unfortunately, in ScSF, rebooting a worker host means that all simulation
work in its VMs is lost. Also, if the controller host is rebooted, all the experiment
runners are stopped and all the simulation work of all the cluster is lost. For some
of the longest experiments, the amount of work lost accounts in days of real time.

The lesson learned is that experiments in ScSF should support graceful pause
and restart so resource reboots do not imply loss of work. This would be provided
by a control mechanism to pause-restart worker VMs. Also, the experiment run-
ner functionality should be hosted in the worker VM to be paused with the VM,
una↵ected by any reboot.
Loaded systems network fail: Surges of experiment failures appeared occa-
sionally: Multiple VMs would become temporarily un-responsive to ssh connec-
tions when their hypervisor was heavily loaded. Subsequently, the experiment
runner would fail to connect to the VM, and the experiment was considered
failed. The lesson learned is that saturated resources are unreliable. All runner-
VM communications were hardened, adding re-trials, which reduced greatly the
fail rate.
Monitoring is important: Many types of failure impact on experiments, such
as simulator or Slurm bugs, communication problems, resource saturation in the
VMs, or hypervisor configuration issues. Failures are expected, but ScSF lacked
the tools and information to quickly diagnose the cause of the problems.

The lesson learned is that monitoring should register metadata that allows
quick diagnosis of problems. As a consequence, details level in experiment logs
was increased and a mechanism to retrieve Slurm crash debug files was added.
The system is as weak as its weakest link: All ScSF’s data and metadata is
stored in a MySQL database hosted in the controller host. In a first experiment
run, at 80% of completed experiments the hard disk containing the database

106

ScSF: A Scheduling Simulation Framework 19

crashed, and all the experimental data was lost. Two months of real time were
lost and an article submission deadline was missed. Currently, data is subject to
periodic backups and the database is replicated.

6 Conclusions

We present ScSF, a scheduling simulation framework that provides tools to sup-
port all the steps of the scheduling research cycle - modeling, generation, si-
mulation, and result analysis. ScSF is scalable, it is deployed over distributed
resources to run and manage multiple concurrent simulations and provides tools
to synthesize results over large experiment sets. The framework produces rep-
resentative results by relying on Slurm, which captures the behavior of the real
system schedulers. ScSF is also modular and might be extended by researchers to
generate customized workloads or calculate new analysis metrics over the results.
Finally, we improved the Slurm simulator which now achieves up to 15x simu-
late over real time speed-ups while preserving its determinism and experiment
repeatability,

This work provides a foundation for future scheduling research. ScSF will
be liberated as open source, enabling scheduling scientists to concentrate their
e↵ort on designing scheduling techniques and evaluating them in the framework.
Also, we share the experience of using ScSF to design our own scheduling algo-
rithm and evaluating it through the simulation of a large experiment set. This
experience shows that the framework is capable of simulating 33 years of real
systems time in less than two months over a small distributed infrastructure.
Also, it constitutes a guide for future users of the framework.

Finally, our experiences building ScSF and running it in scale might be of
use of researchers who are building similar systems.

7 Acknowledgments
This material is based upon work supported by the U.S. Department of Energy,
O�ce of Science, O�ce of Advanced Scientific Computing Research (ASCR).
The National Energy Research Scientific Computing Center, a DOE O�ce of Sci-
ence User Facility, is supported by the O�ce of Science of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231. Financial support has been
provided in part by the Swedish Government’s strategic e↵ort eSSENCE and the
Swedish Research Council (VR) under contract number C0590801 (Cloud Con-
trol). Special thanks to Stephen Trofino↵ and Massimo Benini from the Swiss
National Supercomputing Centre, who shared with us the code base of their
Slurm Simulator. Also, we would like to thank the members of the DST de-
partment at LBNL and the distributed systems group at Ume̊a University who
administrated or gave-up the compute nodes supporting the use case.

References

1. Dirty cow (January 2017), https://dirtycow.ninja/

107

20 Gonzalo P. Rodrigo et al.

2. SchedMD (January 2017), https://www.schedmd.com/
3. shuttle (January 2017), https://github.com/apenwarr/sshuttle
4. Workflowgenerator (1 2017), https://confluence.pegasus.isi.edu/display/

pegasus/WorkflowGenerator

5. Alvarez, G.P.R., Elmroth, E., Östberg, P.O., Ramakrishnan, L.: Enabling workflow
aware scheduling on hpc systems. In: Under review for HDPC 2017

6. Alvarez, G.P.R., Östberg, P.O., Elmroth, E., Antypas, K., Gerber, R., Ramakr-
ishnan, L.: Towards understanding job heterogeneity in hpc: A nersc case study.
In: 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid). pp. 521–526. IEEE (2016)

7. Declerck, T.M., Sakrejda, I.: External Torque/Moab on an XC30 and Fairshare.
Tech. rep., NERSC, Lawrence Berkeley National Lab (2013)

8. Feitelson, D.: Parallel workloads archive 71(86), 337–360 (2007), http://www.cs.
huji.ac.il/labs/parallel/workload

9. Feitelson, D.G.: Workload modeling for computer systems performance evaluation.
Cambridge University Press (2015)

10. Feitelson, D.G., Tsafrir, D.: Workload sanitation for performance evaluation. In:
2006 IEEE international symposium on Performance analysis of systems and soft-
ware. pp. 221–230. IEEE (2006)

11. IBM: Platform computing - lsf. http://www-03.ibm.com/systems/

technicalcomputing/platformcomputing/products/lsf/sessionscheduler.

html (January 2014)
12. Jackson, D., Snell, Q., Clement, M.: Core algorithms of the maui scheduler. In:

Job Scheduling Strategies for Parallel Processing. pp. 87–102. Springer (2001)
13. Kannan, S., Mayes, P., Roberts, M., Brelsford, D., Skovira, J.: Workload Manage-

ment with LoadLeveler. IBM Corp. (2001)
14. Klusáček, D., Rudová, H.: Alea 2 – job scheduling simulator. In: Proceedings of the

3rd International ICST Conference on Simulation Tools and Techniques (SIMU-
Tools 2010). ICST (2010)

15. Lublin, U., Feitelson, D.G.: The workload on parallel supercomputers: modeling
the characteristics of rigid jobs. Journal of Parallel and Distributed Computing
63(11), 1105–1122 (2003)

16. Lucero, A.: Simulation of batch scheduling using real production-ready software
tools. Proceedings of the 5th IBERGRID (2011)

17. Rodrigo, G., Östberg, P.O., Elmroth, E., Antypass, K., Gerber, R., Ramakrish-
nan, L.: HPC system lifetime story: Workload characterization and evolutionary
analyses on NERSC systems. In: The 24th International ACM Symposium on
High-Performance Distributed Computing (HPDC) (2015)

18. Schwiegelshohn, U.: How to design a job scheduling algorithm. In: Workshop on
Job Scheduling Strategies for Parallel Processing. pp. 147–167. Springer (2014)

19. Stephen Trofino↵, M.B.: Using and Modifying the BSC Slurm Workload Simulator.
In: Slurm User Group (2015)

20. Yoo, A., Jette, M., Grondona, M.: SLURM: Simple Linux Utility for Resource
Management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) Job Sche-
duling Strategies for Parallel Processing, Lecture Notes in Computer Science, vol.
2862, pp. 44–60. Springer Berlin / Heidelberg (2003)

21. Zakay, N., Feitelson, D.G.: Preserving user behavior characteristics in trace-based
simulation of parallel job scheduling. In: IEEE 22nd International Symposium on
Modelling, Analysis & Simulation of Computer and Telecommunication Systems
(MASCOTS), 2014. pp. 51–60. IEEE (2014)

108

Paper V

Enabling Workflow Aware Scheduling on HPC
Systems

Gonzalo P. Rodrigo, Erik Elmroth, Per-Olov Östberg, and Lavanya
Ramakrishnan

Submitted 2017

Enabling Workflow Aware Scheduling on HPC systems

Gonzalo P. Rodrigo∗, Erik Elmroth, Per-Olov Östberg, Lavanya Ramakrishnan+
Dept. Computing Science, Umeå University, SE-901 87, Umeå, Sweden

Lawrence Berkeley National Lab, 94720, Berkeley, California+
{gonzalo,elmroth,p-o}@cs.umu.se

lramakrishnan@lbl.gov

ABSTRACT
Work�ows from diverse scienti�c domains are increasingly present
in the workloads of current HPC systems. However, HPC sche-
duling systems do not incorporate work�ow speci�c mechanisms
beyond the capacity to declare dependencies between jobs. �us,
when users run work�ows as sets of batch jobs with completion
dependencies, the work�ows experience long turn around times.
Alternatively, when they are submi�ed as single jobs, allocating
the maximum requirementof resources for the whole runtime, they
resources, reducing the HPC system utilization.

In this paper, we present a work�ow aware scheduling (WoAS)
system that enables pre-existing scheduling algorithms to take ad-
vantage of the �ne grained work�ow resource requirements and
structure, without any modi�cation to the original algorithms. �e
current implementation of WoAS is integrated in Slurm, a widely
used HPC batch scheduler. We evaluate the system in simulation
using real and synthetic work�ows and a synthetic baseline work-
load that captures the job pa�erns observed over three years of the
real workload data of Edison, a large supercomputer hosted at the
National Energy Research Scienti�c Computing Center. Finally, our
results show that WoAS e�ectively reduces work�ow turnaround
time and improves system utilization without a signi�cant impact
on the slowdown of traditional jobs.

1 INTRODUCTION
In recent years, we have seen an increase in the processing of large
amounts of scienti�c data and high-throughput processing at HPC
centers. �ese scienti�c workloads are changing the landscape
of so�ware ecosystems on HPC centers that have traditionally
supported large communication-intensive MPI jobs. �e scienti�c
workloads are increasingly composed as scienti�c work�ows with
complex dependencies.

�e HPC batch schedulers still operate with a job-centric view
and do not account for the complexities and dependencies of sci-
enti�c work�ows. Scienti�c work�ow tools present in HPC centers
o�en run work�ows as chained jobs (jobs with dependencies) or
as a pilot job (a single job containing the entire work�ow). �ese
approaches both have their drawbacks. Work�ows run as chained
jobs have very long and unpredictable turnaround times as they
include the intermediate wait times for each job in the critical path.
Work�ows run as pilot jobs are likely to have shorter turnaround
time, since the intermediate tasks do not wait for resources. How-
ever, they allocate the maximum required resources over the length

* Work performed while working at the Lawrence Berkeley National Lab.
HPDC ’17, Washington D.C., USA
2016. 123-4567-24-567/08/06. . .$15.00
DOI: 10.475/123 4

of the work�ow for its entire runtime. �us, resources are wasted
as they are allocated but idle in parts of the work�ow.

Scienti�c work�ows also provide a unique opportunity for fu-
ture HPC scheduling and resource management systems. Scienti�c
work�ows include detailed knowledge of the complex pipeline
and dependencies between the tasks that can be used to gain ef-
�ciency in the system. In this work, we present the design and
implementation for extending existing batch schedulers with work-
�ow awareness. Our work�ow aware scheduling system (WoAS)
takes advantage of dependencies to achieve short turnaround times
while not wasting resources. WoAS enables pre-existing scheduling
algorithms to be aware of the �ne grained work�ow resource re-
quirements and structure, without any modi�cation to the original
scheduling algorithms. WoAS uses the knowledge of the work�ow
graph to schedule individual tasks while minimizing the wait times
for the jobs.

We implement WoAS within Slurm, a common HPC workload
manager. Execution of diverse work�ow workloads was simulated
over a model of a real system (NERSC’s Edison) [18], [1]. In our
evaluation, we compare its performance with the chained and pilot
job approaches. �e experiment set is composed of 271 scenarios,
covering di�erent work�ow types and submission pa�erns. Simu-
lated time accounts for 253,484 hours (29 years) of system time and
3.8 million compute core-years.

Our experiments show that in most workloads run with WoAS,
work�ows show signi�cantly shorter turnaround times than the
chained job and single job approaches without wasting resources.
�e impact on non-work�ow jobs was minimal except for work-
loads heavily dominated by very large work�ows where perform-
ance limitations of the back�lling (queue depth limit) interfered
with their scheduling.

Speci�cally, in this paper, our contributions are:

• We design a work�ow aware scheduling system and al-
gorithms that produce turnaround times with almost no
intermediate wait times and wastage of resources.

• We present the WoAS implementation and its integration
with Slurm. �e WoAS system will soon to be made avail-
able open source.

• We evaluate and present the results of a detailed compar-
ison of the work�ow performance and system impact of
WoAS, the pilot job, and the chained job approaches for
diverse work�ow workloads simulated over the model of
Edison, a supercomputing system at the National Energy
Research Scienti�c Computing Center (NERSC).

�e rest of the paper is organized as follows. In Section 2, we present
the life cycle of work�ows and current scheduling approaches. �e

111

Figure 1: Cybershake work�ow executed using chained and
pilot job approaches. �e chained jobs approach increases
execution time due to the wait times. In the single job, there
are no intermediate wait times but it wastes 600 cores for 4h.

Work�ow Aware Scheduling technique (WoAS) is discussed in Sec-
tion 3. We present the methodology to compare WoAS to the exist-
ing work�ow scheduling methods in Section 4 and experimental
results in Section 5. We discuss our conclusions in Section 6.

2 BACKGROUND
In this section, we describe the state-of-art and challenges of man-
aging scienti�c work�ows on HPC systems and discuss related
work.

2.1 A work�ow’s life-cycle
Work�ows are represented as Directed Acyclic Graphs (DAG) i.e.,
each vertex represents one or more work tasks, and the edges
express control or data dependencies between the (vertices) tasks.

�e �rst step to run a work�ow on an HPC system is to map
the DAG into one or more batch jobs, while respecting the data
and control dependencies expressed by the edges. Users manually
do the mapping or rely on work�ow managers [26], which might
also automate the submission and control of the work�ow job(s).
�ere are di�erent mapping techniques governed by targets such
as minimizing cost [27], minimizing runtime and turnaround time
[4, 25], or tolerating faulty, distributed resources [17].

Once the execution plan is de�ned as a list of jobs and dependen-
cies, users usually follow one of two strategies to submit a work�ow.
�e strategies balance between lower resource consumption (as
chained jobs) or shorter turn around time (as a pilot job). Figure 1
illustrates these approaches the for Cybershake work�ow ([3]),
which is used by to simulate geological structures to characterize
earthquake hazards in a region.

2.1.1 Workflow as chained jobs. In this approach, one batch job
is submi�ed per execution plan job. Current batch schedulers allow
users to specify dependencies between batch jobs. �e scheduler
then forces jobs to wait to start until the completion of its depend-
encies. Alternatively, users or their work�ow engines might submit
a job when the the ones it depends upon have completed. Each
job receives the exact amount of resources required to run and
no allocated hardware resources are intentionally le� idle. How-
ever, the work�ow runtime will include the wait times endured
by each of the jobs in the work�ow’s critical path. As described
in Section 2.2, job priority systems do not consider a job until its

Figure 2: Classical batch scheduler with the waiting job
queue in its center, which jobs are ranked by the priority
engine and scheduled by FCFS and back�lling.

dependencies are resolved. As a consequence, job wait times for
explicit dependencies are equal to the ones observed by submi�ing
jobs when their dependencies are solved.

Figure 1a showsCybershake’s execution plan submi�ed as chained
jobs. Even if both jobs are submi�ed at the same time, �ob2 has to
wait four hours from the point �ob1 is completed, as its priority
(and thus position in the waiting queue) does not increase from its
initial value until its dependencies are resolved. �e result is that
the work�ow runtime (i.e., start of �rst job to completion) is nine
hours, wait time is four hours (44%), while the turnaround time
(i.e., from job submission to completion) is 13 hours, eight hours
accounts for wait time (61%).

2.1.2 Workflow as a pilot job. In this approach, the execution
plan is submi�ed as a single job. �e job’s time limit is set to
the expected runtime of the critical path with no intermediate job
wait time. �e job’s resource request is the maximum resource
allocation needed at any point in the work�ow. As a consequence,
the runtime of the work�ow is the minimum possible, but some
allocated resources might be idle, and thus wasted.

Figure 1b presents Cybershake’s execution plan submi�ed as a
pilot job. �e work�ow wait time is larger than the one faced by
the chained job approach. However, the runtime is the minimum
possible as there is no intermediate wait time. In this case, the
wait time for the pilot job to start is smaller than the wait time
for the two jobs in the chained job approach. However, during the
�rst four hours of the work�ow 600 CPU cores are allocated to
the work�ow but le� unused, totaling 2400 idle core hours. �is is
the caveat of this approach, turnover is be�er but for a higher cost
of consumed resources over the same work. �is approach would
work well for work�ows where the di�erence between the minimal
and maximum width of the work�ow is not signi�cant.

2.2 Classic HPC scheduling systems
Figure 2 presents the schema of a classic HPC scheduler with a
queue of waiting jobs in its center: a) Jobs are inserted in a queue
when users submit them. b) Scheduling algorithms select which jobs
should start running and extract them from the queue. A classical
HPC batch scheduler incorporates at least the following scheduling
algorithms: FCFS (First-Come, First-Served) [6], running the �rst
job of the queue if enough resources are available; and back�lling
[11], scanning jobs in the queue in order to run them if enough
resources are available and if they would not delay the start time of

112

Enabling Workflow Aware Scheduling on HPC systems HPDC ’17, June 26–30, Washington D.C., USA

previous jobs in the queue. Combined, they achieve high utilization
and a reasonable job turnaround times in HPC systems.

Schedulers also include internal prioritization engines to manage
turnaround time by ranking waiting jobs following some adminis-
trator set policy. Back�lling algorithms try to schedule sooner those
jobs with a higher rank (priority).

Batch schedulers also understand job dependencies (relation-
ships between jobs), and, among them, the most common one,
enforces that a job cannot start until n previous jobs end success-
fully. Dependencies can be used to to express the structure of the
jobs within a work�ow. However, we observed that in existing
HPC schedulers dependencies a�ect the job priority calculation.
For example, job age priority engines consider that a job age starts
when its dependencies are resolved. In such schema, the submission
time of the job will be its dependency resolution time, no ma�er
when it was submi�ed. In Figure 1a we show the impact of this
policy on work�ow’s turnaround time.

2.3 Related work
Complex experiments in scienti�c �elds like high-energy physics,
geophysics, climate study, or bioinformatics, require distributed
resources as computational devices, data-sets, applications, and
scienti�c instruments. �e orchestration of such processes is or-
ganized as scienti�c work�ows: collections of tasks structured by
their control and data dependencies [26]. Distributed scienti�c
work�ows have been explored in detail in the last few years. Due
to location speci�c or large resource requirements, a large portion
of the work�ows are distributed [16], i.e. their tasks run and data
stored in di�erent compute centers. In such environment, their
execution depends on user inputs, speci�c resource characteristics,
and run-time resource availability variations [9].

In other cases, work�ows are run within the same compute
facilities (single site work�ows), however their tasks might be too
large, or require too di�erent resource sets that force to run them
as di�erent entities. �is work focuses on the scheduling of the
jobs of single site work�ows.

Scheduling, automation, and execution systems for scienti�c
work�ows has been largely studied. Pegasus [4], Askalon [5], Koala
[14], and VGrADS [17] are examples of Grid work�ow managers
that includes di�erent approaches to work�ow mapping, meta-
scheduling, execution, task management, monitoring, and fault
tolerance. However, they do not propose speci�c solutions to sched-
ule the jobs of a work�ow inside each of the Grid site, which is
responsibility of the site scheduler.

�ere is also work on speci�c Grid work�ow scheduling al-
gorithms like: Myopic [25], Min-Min [13], Max-Min [13], Su�erage
[13], Heterogeneous-Earliest-Finish-Time (HEFT) algorithm [24],
or Hybrid [20]. �ese algorithms schedule jobs within, between,
or across work�ows under di�erent strategies and objective func-
tions. However they rarely schedule regular jobs and work�ow
jobs together, which is the main focus of this work.

Scienti�c work�ow management systems for high throughput
application have become more popular in the last years. Fireworks
[8], �eueDO (QDO) [2], Falkon [15], and Swi� [29] o�er tools for
work�ow composition and management, execution, job packing
of tasks (serial, OpenMP, MPI, and hybrid), and monitoring. �ese

systems may deploy their own execution frameworks or run their
task in workers packed inside HPC jobs which, in the end are
submi�ed as a pilot job or chained jobs.

Finally, data intensive and streaming work�ows have become
very important for the data processing within large IT compan-
ies. Frameworks like Hadoop [22], Spark [28], or Heron [10] o�er
work�ow composition, management, and automation.

Clusters with batch jobs and services present the challenge of
scheduling di�erent workloads which metrics that cannot be com-
pared. In that context, multilevel scheduling approaches have ap-
peared allowing independent schedulers for di�erent workloads
(Mesos [7]), smart resource managers (Omega [21]), or cloud in-
spired two level scheduling for HPC systems (A2L2 [19]).

3 WORKFLOW AWARE SCHEDULING
Work�ow Aware Scheduler (WoAS) provides an interface that
allows users to submit work�ow jobs. As illustrated in Figure 3,
a user submits a work�ow job that is a batch job that includes a
manifest describing its internal work�ow structure (e.g., two task
jobs in the example). �e work�ow job is stored in the system’s
waiting queue.

�ere are three separate threads that work on the waiting queue
- WoAS, the scheduler, and the priority engine. WoAS is always
activated between the scheduler and priority. �us the order of
execution would be [WoAS, Scheduler, WoAS, Priority Engine].
When WoAS acts before the scheduler, it substitutes each work�ow
aware job by the task jobs described in its manifests, con�guring
the corresponding dependencies, and placing them in the same
position of the queue as the original job. �e resulting version of
the queue is the scheduler view of the queue.

Once the queue is transformed, the scheduling algorithms act
on it. In our example, back�lling selects and starts the �rst task job
of of the example work�ow, allocating exactly the resources that it
requires. A�er the scheduling phase is over, WoAS transforms the
waiting queue, removing the task jobs of work�ows that have not
started and restoring the corresponding work�ow-aware jobs. �e
current state of the queue is the priority view of the queue. �e pri-
ority engine periodically processes the waiting queue, calculating
the priority of each job and ordering jobs accordingly.

�e system continues repeating the cycle of a) recalculating the
jobs priority b) transforming the queue into its scheduler view c)
doing a scheduling pass (scheduling the second job of the example
work�ow when the �rst had completed) d) restoring the queue to
its priority view.

In this section, we describe the steps of this process in detail.

3.1 Work�ow job submission
In WoAS, users submit a work�ow as a work�ow aware job. �is is
an extension of the way work�ows are represented in the pilot job
approach. Users submit a job allocating the maximum resources
required in the work�ow for the minimum duration of its critical
path, similar to a pilot job. However, a manifest describing the
work�ow is a�ached to the batch script.

Figure 4 is an example work�ow description in JSON format
for the LongWide work�ow (de�ned in Table 2). It contains the
de�nition of all the tasks within the work�ow, including their

113

Figure 3: A work�ow in WoAS scheduling model from its submission to execution start.

1 {�tasks�: [

2 {�id�: �SLong�, �cmd�: �./ SLong.py�,

3 �cores�: 48, �runtime�: 14400.0 },
4 {�id�: �SWide�, �cmd�: �./ SWide.py�,

5 �cores�: 480, �runtime�: 3600.0,

6 �deps�: [�SLong�] }] }

Figure 4: LongWide work�ow manifest in JSON format.

resource allocation requirement (allocated CPU cores for an es-
timated runtime), command or application to be executed (cmd),
and dependencies with other tasks (deps, where SWide depends on
completion of SLong). �is manifest information is used by WoAS
to transform a work�ow aware job (priority view) into its task jobs
(scheduler view).

3.2 Work�ow Aware Scheduling system
�e Work�ow Aware Scheduling system (WoAS) is a job waiting
queue model to bring work�ow awareness to an HPC scheduler
by o�ering di�erent job lists (views) depending on the scheduler
element that is interacting with the queue. �e dual-view enables
WoAS to enforce general scheduling behaviors such as the ones in
Section 3.3, without requiring to change the code of the scheduler
elements interacting with the queue.

WoAS controls the access to the waiting queue, and depending
on the scheduler component interacting it presents two views:
�e priority view. In this view, each work�ow aware job is presen-
ted as a single job (the one submi�ed by the user). �is view is the
one presented to the priority engine. As a consequence, the priority
and queue position of each work�ow is based on the work�ow
aware job characteristics (submission time, geometry). All tasks in
a work�ow have the same priority or start with the same priority?
�e scheduler view. In this view, each work�ow aware job is
present in the waiting queue through instances of its internal task
jobs (and corresponding dependencies) placed in the same position
of the queue where the original work�ow aware job was. �is
view is the one presented to the scheduler algorithms, so they can
schedule the work�ow task jobs individually.

3.3 Work�ow awareness in WoAS
In this section, we discuss the impact of the views model on the
work�ow awareness in the scheduler. Speci�cally, there are three
behaviors. First, work�ow task job level scheduling results in the
allocated resources are the minimum possible. Second, the inter-
mediate wait times are minimized to avoid the ones observed in
the chained job approach. Finally, this minimizes system gaming

where users don’t have to ask for strange resource requests to make
sure the tasks in their work�ows get the correct priority.

Work�ow awareness is consequence of the interaction of the
scheduler with the views and the way job’s priority information is
transferred when the queue is transformed between views.

3.3.1 Workflow task level job scheduling. In WoAS, the schedu-
ling algorithms schedule work�ow task jobs, assigning the precise
required resource allocation to each step of the work�ow.

�is is possible because the scheduling algorithms act on the
scheduler view provided by WoAS. In opposition to the pilot job
approach, even if work�ows are submi�ed as a single job, WoAS
ensures that the scheduling algorithms will see the work�ows as
their task jobs.

�is characteristic is what allows WoAS not to waste resources
to run work�ows, even if they are submi�ed as single job.

3.3.2 Minimization of the intermediate wait times. With WoAS,
when the �rst task job of a work�ow is started during the scheduling
view, the rest of the work�ow task jobs remain related by their
dependencies in the waiting queue. �is situation is similar to how
task jobs stay in the queue for the chained job approach.

However, in the chained job approach, intermediate wait times
might be very long. Classical schedulers consider jobs with non
resolved dependencies as not ”submi�ed”, so their priority does not
increase as they wait. From the moment that jobs they depend on
are completed, task jobs have to wait as they had been submi�ed,
even it had been waiting in the waiting job queue for much longer
time.

WoAS reduces intermediate wait times by propagating the pri-
ority a�ributes of the original work�ow aware job to all its tasks.
All the tasks have the same geometry priority factor and submit
time as the original work�ow aware job. As a consequence, under
the scheduling view, all the tasks in a work�ow are positioned in
adjacent positions in the waiting queue. If the �rst task job starts,
its queue position should be close to the top. As all the work�ow
task jobs have similar queue positions, once the �rst task job is
completed, the following one will still be in a good queue position
to be started. In such situations, the intermediate wait time should
be close to the time until adequate resources for that task job are
available. �is time can be signi�cantly shorter than the time that
it would take for that task job to progress from the bo�om to the
top of the priority queue in a highly utilized system.
Propagation of the priority information is performed by a com-
bination of the views and operations within WoAS.

114

Enabling Workflow Aware Scheduling on HPC systems HPDC ’17, June 26–30, Washington D.C., USA

A work�ow aware job’s priority information is set during the
priority calculation under the priority view. In our system, the
priority of a job depends on two factors:

1) Job’s geometry factor, (smaller job, higher priority). It is cal-
culated only once in the life of a job, in the �rst priority calculation
process that considers it.

2) Job’s age factor, (older job, higher priority) is recalculated in
every priority calculation process. It depends on the time the job
was submi�ed.

Algorithm 1 Show scheduler view actions.

1 def woas show schedu l e r v i ew () :
2 global wa i t i ng queue
3 for j o b in l i s t (wa i t i ng queue) :
4 i f i s wo r k f l ow awa r e j o b (j ob) :
5 remove job (wa i t ing queue , j ob)
6 for t a s k d e s c in j o b . man i f e s t [” t a s k s ”] :
7 new job = c r e a t e j o b (t a s k d e s c)
8 new job . p r i o . geometry = job . p r i o . geometry
9 new job . p r i o . age = job . p r i o . age
10 new job . submi t t ime = job . s ubm i t t ime
11 new job . copy wf j ob = job
12 i n s e r t j o b (wa i t ing queue , new job)

�e priority information of the work�ow aware job is propagated
to its task jobs through the operation woas show scheduler view,
which transforms the waiting queue into scheduler view. �e de-
tailed actions of this operation can be followed in Algorithm 1,
where each task job receives the work�ow aware job geometry
factor, age factor, and submit time.

�is propagation has three consequences for future priority cal-
culations of all the task jobs of the same work�ow. First, Future task
job age factor calculations will be based on a work�ow’s submit
time. Second, the geometry factor of a job is set, so the priority
engine does not recalculate it. �us, future task job priority calcu-
lations will be based on the work�ow aware job’s geometry, not its
own. Finally, all task jobs of the same work�ow will have the same
priority (and the same the work�ow aware job would have) since
it has the same geometry factor and same submit time.

�is ensures that all task jobs of the work�ow will have the same
priority and will occupy a similar position in the waiting queue,
which leads to the minimization the intermediate wait time,

As a �nal note, the priority propagation of non started work-
�ows is closed by the woas show priority view operation. As it
transforms the queue in its priority view, it enforces that if a work-
�ow has not started, it becomes again the same work�ow aware
job, with the same priority factors.

3.3.3 Minimize system gaming. �e priority propagation mech-
anism described in Section 3.3.2 has another side e�ect. Since task
job’s priority factors are the same as the ones of the work�ow aware
job, the waiting time of the �rst task job is equivalent to the waiting
time of a job of the geometry and submission time of the work�ow
aware job.

�is is a desired e�ect to stop users from gaming the system, i.e.
users submit work�ows where �rst job is very small, expecting a
short wait time to then run larger task jobs. �is takes advantage

of the short wait time minimization of WoAS: As the work�ow
wait time depends on the work�ow aware geometry, such schema
would only produce longer wait times.

3.4 Batch Scheduler integration

Algorithm 2 Simpli�ed classical scheduler algorithm with WoAS
calls to enable the views model.

1 def s chedu l ing loop wi th WoAS () :
2 while True :
3 i f t i m e t o c h e c k p r i o r i t y () :
4 d o p r i o r i t y c a l c u l a t i o n s ()
5 i f (t i m e t o d o f i f o () or
6 t i m e t o d o b a c k f i l l i n g ()) :
7 woas show schedu l e r v i ew () / / WoAS s p e c i f i c
8 i f t i m e t o d o f i f o () :
9 d o f i f o s c h e d u l i n g ()
10 i f t i m e t o d o b a c k f i l l i n g () :
11 d o b a c k f i l l i n g s c h e d u l i n g ()
12 woa s show pr i o r i t y v i ew () / / WoAS s p e c i f i c

WoAS was incorporated to the scheduler by modifying the core
batch scheduling loop. Algorithm 2 describes a simpli�ed repres-
entation of such process, in which a phase where jobs priority is
recalculated (line 4) alternates with another in which the schedu-
ling algorithms act (lines 8-11). In such a model, introducing WoAS
does not require changing the priority or schedulers behavior. It
requires adding just two actions to the loop, as listed below.
1) addingwoas show scheduler view before the scheduling phase
starts (line 7). �is function transforms the waiting queue for the
following code (scheduling phase) to see the waiting queue through
the scheduler view.
2) adding woas show priority view a�er the scheduling phase
starts (line 12). �is function restores the waiting queue into the
priority view, so the priority actions (if executed), act over that
view.

In Slurm, the priority and scheduling components run concur-
rently, and the queue exclusive access is enforced through a lock.
WoAS is integrated by adding the woas show scheduler view call
just a�er the scheduling code acquires the queue lock. Next, it adds
woas show priority view just a�er the scheduling code frees the
queue lock. �is ensures a behavior equivalent to Algorithm 2.

4 METHODOLOGY
We evaluate the work�ow aware system using a Slurm simula-
tor and analyze the resulting scheduling logs. In this section, we
describe our simulator setup, metrics, and experiment de�nitions.

4.1 System
NERSC’s Edison is the reference system chosen to be emulated
and to model the baseline workload. Edison is a Cray XC30 su-
percomputer, with 6,384 nodes, 24 cores per node, and a total of
133,824 cores and 357 TB of RAM, installed in 2014. It uses an Aries
interconnect and can produce a peak of 2.57 PFLOPS/s. Edison’s
hardware and workload are representative of systems and applica-
tions present in the high performance scienti�c community.

115

HPDC ’17, June 26–30, Washington D.C., USA G. Rodrigo et al.

4.2 Simulation framework
We implemented WoAS in Slurm, since it is increasingly used in
high performance systems. �is functional implementation of a
WoAS enabled Slurm will be distributed as open source. Also,
previous work by the Barcelona Supercomputing Center (BSC)
[12] and the Swiss Supercomputing Center (CSCS) [23] provided
a Slurm simulator base code. We extended the simulator for our
experiments. �e simulator allows us to run experiments up to 20x
faster than real time and run multiple simulations in parallel (up to
200).

�e Slurm scheduler is con�gured similar to current HPC sys-
tems and uses FIFO, back�lling, and it gives higher priority to smal-
ler jobs. However, to reduce complexity of the experiments and
ease analysis, di�erentiated queues or QoS levels are not con�gured
in our simulator. �ese features provide user-level conveniences
and will translate to the work�ow awareness and are not central to
the focus of our experiments.

�e core of our simulator is the Slurm scheduler. Slurm is con-
�gured to use the desired scheduling method (chained jobs, pilot
job, or work�ow aware). A�er con�guration, the simulator starts
Slurm and submits the workload to it, emulating the user behavior.
�e scheduling process is run for a con�gured simulation time (5
days plus an extra for cold start stabilization) and the scheduler
logs are registered in a MySQL database for later analysis.

An experiment is de�ned by its workload characteristics, a sche-
duling method choice, a simulated system con�guration, a target
simulated time, and a random seed. To run an experiment, the
workload is generated according to the workload characteristics.
Work�ow characteristics include the characteristics of the real HPC
system workload a�er regular jobs are modeled, a list of speci�c
work�ows present in the workload, and their submission pa�erns.

Finally, each experiment is repeated using six di�erent random
seeds (producing di�erent workloads) and their results aggregated
to ensure that analyses are not based on single non representative
experiments.

4.2.1 Workload generation. Each experiment has a workload
composed of regular (non work�ow) synthetic jobs and work�ow
jobs modeled a�er the experiment con�guration. �e regular jobs
in our workload traces are modeled a�er the historical traces from
three years of NERSC’s Edison system, [18] and [1].

�e experiment con�guration de�nes the speci�c work�ows
present in the workload, the job format for the work�ow (a pilot
job, chained jobs, or a job including a work�ow manifest), and
the submission pa�ern. Our simulator supports two work�ow
submission pa�erns - work�ow periodic and work�ow share. In
the periodic one, a work�ow is submi�ed once every con�gured
time period. In the share model, work�ows are submi�ed at a
uniform pace so the number of allocated core hours to work�ows
represents a desired share of the total core hours of the workload.

�e workload generator also includes a mechanism to pre-�ll
the system to capture a typical state of a supercomputer system.
�e lengths of the jobs for pre-�ll stage are con�gured to obtain
a job wait time baseline of four hours. Also, a job pressure con-
trol mechanism adjusts the job and work�ow submissions so the
workload job pressure (submi�ed core hours over system capacity
in a time period), is slightly over 1.0. �is ensures that simulated

system will have have enough pending work to support the wait
time baseline, but with not to much to signi�cantly increase the job
wait time as the workload scheduling progresses. Also, the simu-
lator uses a system cold-start stabilization period of one day. �is
workload is not representative of a regular day systems operation
and is discarded for the analyses.

Finally, the workload generator uses a random number generator
that can be initialized with a seed. �e same seed always produces
the exact same regular jobs and work�ow submission times, inde-
pendently of the work�ow scheduling system chosen (as long as
the same workload con�guration is used). �is is used to do a fair
comparison between di�erent scheduling techniques for the same
experiment con�guration.

�e described workload analysis and modeling tools; the work-
load generator; the framework to de�ne and run experiments; the
tools to process and analyze experiment results; and the improve-
ments on the Slurm simulator, were developed in the context of
this work.

4.3 Evaluation metrics
In this section, we present the metrics used to compare experiment
results and the method to calculate them.

4.3.1 Performance metrics. In our analyses, we use three work-
�ow (wait time, run time and turnaround time) and two system
(system utilization, job slowdown) performance metrics to compare
the pilot job, chained job, and WoAS approaches.
Work�ow wait time (wW) is the time between the submission of
the �rst job of the work�ow and its execution start. Smaller wait
times are preferred. It depends on the load in the system (waiting
work vs. compute capacity, with higher loads implying overall
longer waiting times), the geometry (smaller jobs tend to wait less
due to back�ll), and priority (higher tends to imply shorter wait
time).
Work�ow runtime (rW) is the time between the execution start
of the �rst job and the execution completion of the last job of the
work�ow. It includes the runtime of the jobs in the critical path of
the plan and the wait time between them. Smaller runtimes indi-
cate lesser waste between the tasks of the job. Minimum possible
work�ow runtime is the sum of the runtimes of the jobs in the
critical path (as they run back to back).
Work�ow turnaround time (tW) is time between the submission
of the �rst job and the execution completion of the last job of the
plan. Smaller values are be�er. It is obtained as the sum ofwW and
r

W , thus it depends on the factors the previous two depend on.
Actual utilization during a time period (t) is
P
corehours �i �

P
wasteWi

coresS ⇤t , where corehours �i are the core hours al-
located by jobs and work�ows that are executed, wasteWi is the
number of core hours allocated by a work�ow that are not assigned
to an internal task or job where coresS are the number of cores
of the compute system. �is metric is a variation of the classical
utilization that takes into account that work�ows might allocate
resources but not use them through all their runtime. It measures
the actual work done over the system capacity, not just allocation.
�is is relevant to measure since pilot job workloads might show a

116

Group A: Work�ow critical path length. B: Allocated cores, overall vs 1st job. C: Alloc. cores and rtime, overall vs �rst job.
Geometry n jobs/rtime:n h/max 240 core 2jobs/rtime:2n h/max 240n cores 2jobs/rtime:2n h/max 240n cores

Usage/Waste 240n core-h / 0 core-h. 240 + (n) ⇤ 240 core-h. / (n � 1) ⇤ 240
core-h

240+n(2n� 1) ⇤ 240 core-h. / n(n� 1) ⇤
240 core-h.

Pro�le
Table 1: Work�ows characteristics for work�ow groups: critical path size, pilot job geometry (rtime andmax cores), work�ow
tasks usage (usage), potential wasted resources (waste), and a pro�le of the allocated resources in time if the critical path is
run with no intermediate waits.

high theoretical classical utilization and hide the fact that resources
might be allocated but not used.
Job’s slowdown is measured as r � +w �

r � , i.e. job’s turnaround di-
vided by its runtime. �is metric allows us to compare the wait
time from jobs with di�erent runtimes. We use this metric to meas-
ure the impact of di�erent work�ow scheduling techniques on the
non work�ow jobs. We calculate this metric for non work�ow
jobs grouped in three di�erent sizes ([0, 48), [48, 960), [960,1) core
hours). �e median values of this metric for each job group are
used in comparisons.

4.3.2 Metrics calculation. All the metrics of this work are ob-
tained over the aggregation of the results of multiple repetitions
of the same experiment. To keep the meaning of each metric, the
aggregation method is di�erent.

For the work�ow performance metrics, the performance values
of mi �rst work�ows of each repetition i were aggregated and
then the percentile metrics calculated. mi of a repetition of an
experiment is the minimum number of work�ows completed in the
three versions (WoAS, pilot job, and chained job) of that repetition
i . �is pre-selection is required to compare similar datasets and
these metrics cannot be calculated for incomplete work�ows.

Actual utilization for an experiment is calculated as the mean of
the observed actual utilization in the six repetitions. �is is equival-
ent to calculating the utilization of an experiment which was the
concatenation of the six repetitions. For the aggregated calculation
of the job’s slowdown, all the non work�ow job slowdown values
in the repetitions are read, and the percentile analysis is performed
on them.

4.4 Experiment sets
Two experiments sets are analyzed in this work, studying the sche-
duling techniques from a more analytical and real point of view,
resulting in 271 experiment con�gurations. Each individual experi-
ment consists of �ve days of simulated scheduling of the workload
plus an extra initial one for the system cold start.

4.4.1 Workflow characteristics study. In this experiment set, we
analyzed the e�ect on the work�ow metrics of using di�erent sche-
duling techniques to run work�ows with di�erent internal charac-
teristics. �ere is a work�ow group for each work�ow character-
istic, and inside each group, a work�ow is de�ned by n: a knob that
controls the e�ect of the work�ow characteristic, where a larger n
implies a larger e�ect.

�ese experiments allow creating a base knowledge on the ex-
pected wait time, runtime, and turnaround times for some basic
work�ow characteristics. �ese are the work�ow groups as presen-
ted in Table 1:
Work�ow critical path length, Group A: �e goal with this
group of work�ows is to study the e�ect on the work�ow metrics
of the number of tasks in the work�ow critical path (n de�nes the
number of those tasks). All work�ows in this group are chained
lists of n tasks of the same size (240 CPU cores and 1h runtime), e.g.
if n = 3 the resulting work�ow has three tasks, in which the second
depends on the �rst and the third of the second. Work�ows with
a longer critical path should su�er: a) larger di�erence between
runtime of the pilot job and �rst job in chained job and WoAS
approaches. b) more intermediate wait time periods between the
tasks in the chained job and WoAS approaches (work�ow runtime
related). c) lower priority for the pilot job and work�ow aware job
vs the priority of the �rst job in the chained job approach (work�ow
wait time related).
Allocated CPU cores: First job vs. work�ow’s maximum,
Group B: Group B is used to study the e�ect on the work�ow
metrics of the di�erence between allocated cores for the �rst job
and the work�ow maximum (n is the di�erence multiplier con-
trolling the breadth of the work�ow). All work�ows in this group
are composed of two jobs, the �rst allocates 240 cores for one hour
and the second allocates n ⇤ 240 cores for one hour. When com-
bined with the work�ow scheduling approaches, a higher number
of n will induce two work�ow wait time related e�ects: a) larger
di�erence between the allocated cores by the pilot job and the �rst
job in the chained jobs and WoAS approaches. b) lower priority
for the pilot job and work�ow aware job vs the priority of the
�rst job in the chained job approach (work�ow wait time related).
�e di�erence in priority is induced by the di�erence in resource
allocation in opposition to the work�ow runtime (Group A).
Allocated CPU cores and runtime: First job vs. work�ow’s
maximum, Group C: �is group is used to study the e�ect of
the di�erence in allocated cores of the �rst job and the work�ow
maximum combined with the di�erence in runtime between the
�rst job and the minimum critical path runtime on the work�ow
metrics (n is the di�erence multiplier controlling the length and
breadth of the work�ow). All work�ows in this group are composed
by two jobs: �e �rst allocates 240 cores for one hour. �e second
allocates n ⇤ 240 cores for 2n � 1 hours. When combined with
work�ow scheduling techniques, a higher number of n will induce
two work�ow wait time related e�ects: a) larger di�erence between

117

Work�ow LongWide WideLong Floodplain
Geometry 2jobs/rtime: 3h/480 max cores 2jobs/rtime: 3h/480 max cores 7jobs/rtime: 32.5h/512 max cores

Usage/Waste 672 core-h / 1728 core-h 672 core-h / 1728 core-h 5624 core-h / 11016 core-h

Pro�le
Work�ow Montage Cybershake Sipht
Geometry 5jobs/rtime: 7.6h/960 max cores 5jobs/rtime: 4.5h/721 max cores 9jobs/rtime: 1.2h/384 max cores

Usage/Waste 375 core-h / 6920 core-h 1145 core-h / 2077 core-h 185 core-h / 395 core-h

Pro�le
Table 2: Work�ows characteristics for individual work�ows including: critical path size, pilot job geometry (rtime and max
cores), work�ow tasks usage (usage), potential wasted resources (waste), and a pro�le of the allocated resources in time if the
critical path is run with no intermediate waits.

the allocated cores and runtime for the pilot job and the �rst job in
the chained jobs and WoAS approaches. b) lower priority for the
pilot job andwork�ow aware job vs the priority of the �rst job in the
chained job approach (work�ow wait time related). �e di�erence
in priority is induced by the di�erence in resource allocation and
work�ow runtime.

In this experiment set, six work�ows of each work�ow group are
de�ned (n 2 {1, 2, 4, 8, 16, 32}, group C was not analyzed for n > 8,
resulting work�ows were too big and would over�ow the system).
For each individual work�ow (16 in total), we create a workload in
which a work�ow is submi�ed with a �xed inter-work�ow time.
Each experiment is run using the pilot job, chained jobs, and WoAS
techniques to compare the resulting metrics across techniques and
values of n.

4.4.2 Performance comparison. In these experiment set we com-
pared the performance of the di�erent work�ow scheduling tech-
niques for two synthetic and four real work�ows, which are presen-
ted in Table 2. �e synthetic one (LongWide andWideLong) are the
minimum building units of any work�ow (a serial phase followed
by a parallel one and vice-versa). �e real ones allow testing our
technique against more realistic workloads with has a particular
characteristic: �xed jobs with a complex pro�le (Floodplain), many
small grouped tasks (Montage), large work�ow with two large par-
allel stages (Cybershake), and a small work�ow with a complex
pro�le shape and many small jobs (Sipht).

In the experiments, work�ows are submi�ed using the work�ow
share approach with seven percentages: %1, %5 %10, %25, %50, %75,
%100. �e experiments with lower ones (%1 to %25) allow under-
standing the performance of the techniques of realistic scenarios
with increasing work�ow importance. �e larger values (%50, %75,
%100) allow understanding what happens in a system when the
workload is dominated by work�ows over regular jobs. �e result-
ing 42 experiments are run using the pilot job, chained jobs, and
WoAS techniques.

Similar experiments were run using the work�ow period sub-
mission (periods 1/12h, 1/2h, 1/h, 2/h, 6/h). �ese allow comparing

the work�ow metrics in cases in which the work�ow presence is
not important enough to in�uence in the whole system behavior.

5 RESULTS AND ANALYSIS
�is section presents the results and analyses of our simulation
experiments. Our evaluation focuses on: a) A study of the im-
pact of work�ow characteristics on the work�ow metrics obtained
with di�erent work�ow scheduling techniques (Section 5.1). b) A
performance comparison for the di�erent scheduling techniques
(Section 5.2).

5.1 Work�ow characteristics study
Figures 5, 6, and 7 present the observed median work�ow wait
times, runtime, and turnaround time for the experiments with
work�ows from Groups A, B, and C (described in Section 4.4.1).
Each horizontal block corresponds to a di�erent work�ow group.
Inside each block, adjacent bars represent the measured median
value for the same experiment con�guration but run with di�erent
scheduling approaches (pilot job, chained jobs, and WoAS). �e
x-axis corresponds to n, a value that de�nes the actual work�ow
used in each work�ow group (De�ned in Section 4.4.1). In each
group a higher value of n indicates that the special characteristic
of the work�ow group is more present.

5.1.1 Workflow wait time. For group A work�ows (top block
of Figure 5), we observe that the relationship between the median
wait times observed for the pilot job and WoAS approaches are sim-
ilar, with slightly shorter wait times for WoAS at all the work�ow
path sizes (n). Any di�erence in work�ow wait time are related to
di�erences in back�lling eligibility since priority and CPU cores
allocation of the pilot job and the �rst job are the same.

In contrast, the chained job work�ow has the same FIFO and
back�lling eligibility as WoAS (both �rst jobs have the same geo-
metry), but higher priority (job size used for priority is bigger in
WoAS). Hence, work�ows run as chained jobs show much shorter
wait time (almost half at n = 32) as the critical path and work�ow
aware job sizes increases and the priority gap increases.

118

Figure 5: Wait time evolution as a dimension (one per hori-
zontal group) of the work�ow group is increased.

Figure 6: Runtime evolution as a dimension (one per hori-
zontal group) of the work�ow group is increased.

Similarly, work�ows in groups B and C (second and third block
of Figure 5) exhibit the shortest wait times when run as chained
jobs, intermediate as WoAS, and much longer (specially for n � 16),
as pilot jobs. �e di�erences are due to the priority and back�lling
eligibility of thework�ow starting job in each group: higher priority,
smaller job (more eligible) in chained job; lower priority, smaller
job in WoAS; and lower priority, larger job (less eligible) in pilot
job.

5.1.2 Workflow runtime. In Figure 6, we observe that all work-
�ows run as pilot jobs or underWoAS present a very similar median
work�ow runtime, close to the expected minimum runtime for each
value of n. �is is expected for the pilot job, since all the tasks are
run within a job with no internal wait times. We see that WoAS is
able to perform as well; inter-job wait times between jobs when
using WoAS is close to 0, e.g work�ows in group A, n = 32, are

Figure 7: Turnaround time evolution as a dimension (one
per horizontal group) of the work�ow group is increased.

composed of 32 jobs (see Table 1) and the median of the accumu-
lated 31 intermediate wait times accounts only for three minutes
which constitutes 0.1% of the total runtime.

When run as chained jobs, group A work�ows show longer accu-
mulated inter-job wait time as the number of jobs in the work�ow
critical path increases. �is matches the observation that most
schedulers do not consider a job as truly submi�ed until its depend-
encies are resolved. Each extra job in the critical path adds an extra
wait time to the runtime,.

Similarly, runtime of work�ows in groups B and C are the min-
imum possible when run as pilot jobs, and close to minimum when
using WoAS. When run as chained jobs, the increasing runtimes
show the e�ect of the wait time of the second job on the runtime:
As n increases, the geometry of the second job grows (slower in B
than in C) and its wait time becomes longer.

5.1.3 Turnaround time. In Figure 7, we observe that for all work-
�ow groups the chained jobs approach presents the longest turn-
around times; followed by the pilot job and WoAS approaches,
which shows the shortest (or equal to pilot job).

Work�ows run as a work�ow aware job present bigger gains in
turnaround time over the pilot job approach as they face signi�c-
antly shorter wait times (in our experiments group B and n � 4).

5.1.4 Summary. Weobserved that running awork�ow as chained
jobs results in the shortest wait time but longest runtime. Running
it as a single pilot job, produces the shortest runtime but longest
wait time. WoAS produces intermediate wait times and close to
shortest runtimes.

Also, results show thatWoAS produces the best turnaround times
in all the scenarios. Finally, a work�ow aware job can be considered
signi�cantly be�er performing than the pilot job approach even
if the turnaround time is similar, since the former does not waste
resources for work�ows with varied resource requirements (more
in the next section).

119

Figure 8: Work�ows turnaround time speed up when sche-
duled as WoAS over pilot (blue) and chained job (pink). Six
work�ows, six di�erent work�ow shares. �e dashed line is
speedup=1, Value > 1 implies better performance of WoAS.

5.2 Performance comparison
In this section, we extend analyses in Section 5.1 to four real and
two synthetic work�ows. In this section we focus on work�ow
turnaround time, and the impact of the scheduling techniques over
the system (actual utilization) and non-work�ow job (slowdown)
performance.

In this experiment set work�ows are submi�ed using work�ow
share (described in Section 4.2.1) to set the percentage of workload
core hours corresponding to work�ows.

5.2.1 Workflow performance. Figure 8 presents themedianwork-
�ow turnaround time speedup of WoAS relative to the chained jobs
and pilot job approaches. �e axis shows percentage of workload
core hours contributed by work�ows. A bar value X = 1 means
that the median turnaround time for WoAS and the corresponding
method are the same. A bar value X > 1, means that the median
turnaround time median for the corresponding approach is X times
the one observed with WoAS.
Compared to the chained job approach, WoAS showed very
large speed ups for long complex work�ows like Cybershake (⇡2x)
and Sipht (⇡3s). For the rest of the work�ows (shorter critical
path), showed smaller but clear speedups in most cases (e.g ⇡1.4x
for WideLong, ⇡1.9x in Montage). Floodplain has relatively small
jobs reducing the e�ect of the intermediate wait times (1.2x-1.3x
speedup).

Also, LongWide work�ows showed shorter turnaround times
when run as chained jobs in the 75% and 100% scenarios (< 1.0
speed ups). A�er analyzing system’s actual utilization and overall
wait time, it was observed that, when using WoAS in the scenarios,
the wait time baseline is more elevated, and utilization is lower
(20% and 30% less). �is is likely related to the work�ow shape.
�e work�ow consists of a long job (48 cores, 4 hours runtime)
and a wide job (480 cores running, 1 hour) where the long job can
become a barrier that cannot start until a number of previous jobs
end. �e long job also stops other jobs from being back�lled since

Figure 9: Work�ows turnaround time speed up when sche-
duledwithWoAS over the pilot (blue) and chained job (pink).
Six work�ows, six di�erent work�ow periods.

they would delay its start. �is wait creates unused free resources
gap that results in low utilization.

For work�ow shares over 25%, Sipht experiments show turn-
around speed-ups under one and get smaller as the work�ow share
increases. In these scenarios, the chained jobs approach achieved
lower utilization values (⇡10-20% less) and less work�ows would
complete than WoAS. Sipht is the work�ow with more jobs, but
very small resource allocation. In a work�ow saturated scenario
the scheduler manages a large number of active jobs, a�ecting its
performance, and thus capacity to utilize the system. Since WoAS
represents all work�ows that have not started yet as a single job,
the scheduler requirements to deal with such workload should be
smaller.

Both situations are very unlikely in a real system, where the
work�ow includes di�erent types of work�ows and regular jobs,
that can be used in e�cient back�lling.
Compared to the pilot job approach, In Figure 8, WoAS shows
turnaround times orders of magnitude shorter than the pilot job.

�e long pilot job turnaround times are due to their long wait
times. �is is an artifact of the workload generation that is designed
to contain the same amount of work i.e., workloads contain the
exact same jobs and work�ows, submi�ed at the same time. When
run with the chained job technique, that work is meant to produce
a job pressure of ⇡1.0 over the system. However, when run with
pilot jobs, the same work allocates more core hours because of
the potentially wasted resources, increasing the job pressure. For
example, in a 100%work�ow share workload, the job pressure when
work�ows are pilot jobs is 1.0+k , being k the percentage of wasted
core hours in the selected work�ow).

In summary, for the same amount of work, the single job ap-
proach presentsmuch longer turnaround times and loads the system
signi�cantly more than the other approaches (more in Section 5.2.3).

Finally, we asses if the previously observed short turnaround
times for isolated work�ows run as pilot jobs are possible for the
work�ows in this section. A set of experiments were performed,
reducing the work�ow presence in the workload by submi�ing

120

Figure 10: Relative di�erence on slowdown
(withWork f lowSlow/noWork f lowSlow) for jobs allocat-
ing [0, 48) core hours. Tested for three real work�ows and
di�erent work�ow shares.

one work�ow in every time period. In Figure 9, WoAS presents
similar or shorter turnaround times than the pilot job approach,
con�rming that for isolated work�ows, the pilot job approach also
shows short turnaround times.

5.2.2 Job fairness. Figure 10 presents the observed median slow-
down for small jobs (under 96 core hours) over di�erent work�ow
shares (x-axis). A value of one means that the median slowdown for
non work�ow jobs is the same as in the case where no work�ows
are present. A number of two represents that the observed median
slowdown is two times the one observed when no work�ows are
present. It is important to note that adding work�ows changes the
workload composition and small variations in the slowdown are
considered normal.

Figure 10 shows that the presence of work�ows a�ects the regu-
lar job’s slowdown. All experiments using the pilot job approach
showed the biggest increases in slowdown (up to 10x), followed
by WoAS (up to 8x), and the chained job ones (up to 2x). �is
di�erence is specially signi�cant for Montage work�ows run as
pilot jobs, where just a 1% work�ow share induces a three times
bigger median slowdown, and almost 10 times slowdown with a 5%
work�ow share. �e observed slowdown is due to the elevation of
the wait time baseline due to the > 1.0 job pressure from the pilot
jobs. In opposition, when the workload contained 1% of Montage
work�ows but were scheduled using WoAS there was no e�ect on
non-work�ow jobs.

�e experiments run with chained job approach show the smal-
lest changes in slowdown with maximum variations of 2x for over
50% work�ow share scenarios. �e chained job scenarios are the
best possible fairness scenario for each work�ow and work�ow
share since work�ows are handled as regular jobs. It is signi�cant
that regular job’s slowdown seems to stop growing a�er work�ow
shares of 25%, even decreasing for �oodplain. �is e�ect can be
explained by the lower priority of the �oodplain jobs, that are larger
than a good share of the workload jobs.

Gain(%) 1% 5% 10% 25% 50% 75% 100%
�oodP 1.80 5.22 14.46 29.29 44.53 51.64 64.47
longW 2.30 8.33 18.93 30.84 40.25 31.99 27.18
wideL 0.33 10.64 19.74 32.35 48.22 57.19 66.16
cybers 1.66 7.72 13.92 25.58 36.72 44.45 52.83
sipht 2.55 11.41 18.16 34.85 42.77 37.27 35.83

montage 12.36 44.90 60.30 72.34 80.13 82.14 85.26
Table 3: Di�erence of actual utilization of WoAS over the
pilot job approach for di�erent work�ow shares.

In the case of the work�ow aware approach, in experiments
with smaller shares (10%) jobs slowdown is almost the same as
the case with zero work�ows. For the rest of experiments (except
Montage over 25%), WoAS shows only slightly bigger slowdowns
(< 2x) than the chained job approach. Big increases on slowdown
(over 4x) on Montage and large work�ow shares (> 25%) point that,
for workloads heavily dominated by work�ows with large resource
allocations, WoAS might have a large impact on smaller jobs. In
system heavily dominated by work�ows, regular jobs might not be
as important. �is is an e�ect of the back�lling limited queue pro-
cessing depth (common performance optimization practice) where
non-work�ow jobs have to climb up the queue by waiting longer.
A technique �ltering non ready queue jobs before the scheduling
processes are started, could alleviate this problem.

Finally, slowdown analysis was performed for all the work�ows
in Table 2 and for medium ([96, 480) core hours) and large ([480,1)
core hours) jobs. Since results were similar, the data was not in-
cluded due to space limitations.

5.2.3 System utilization. We compare the actual utilization
between running the same experiment using work�ow aware sche-
duling, pilot jobs, and chained jobs.

Data shows that experiments using WoAS and chained jobs
presente utilization over 90% and di�erences 5%. As we already
analyzed in Section 5.2.1, the only exception are the experiments
with the LongWide work�ows and work�ow shares of 75% and
100% - chained jobs show over 90% utilization, but the WoAS ones
show ⇡70% and ⇡60%.

Compared with the pilot job approach, WoAS has much higher
levels of actual utilization as the work�ow share increases.

�us, we see that WoAS does not waste resources while pro-
ducing good turnaround times (Section 5.2.1), which indicates its
suitability as a work�ow scheduling technique.

5.2.4 Summary. For workloads with moderate work�ow pres-
ence (< %50 core hours) WoAS presents the shortest work�ow
turnaround times, keeps high system utilization (over 90%), wastes
no resources, and regular jobs slowdown is equivalent to the best
case scenario.

For work�ow dominated workloads, WoAS showed the shortest
turnaround times and high utilization except for the LongWide
experiments. However, slowdown of regular jobs higher than the
chained job cases.

As a �nal note, it is possible that WoAS could perform be�er
in the dominated work�ow scenarios if some queue �ltering was
added (not considering jobs with dependencies for queue construc-
tion) and with workloads with more work�ows diversity. However
that is subject of future work.

121

HPDC ’17, June 26–30, Washington D.C., USA G. Rodrigo et al.

6 CONCLUSIONS
We propose Work�ow Aware Scheduling (WoAS), a new model
for a batch queue scheduler that enables unmodi�ed pre-existing
scheduling algorithms to take advantage of the �ne grained re-
source requirements to produce short turnaround times without
wasting resources. We implemented WoAS and integrated it in
Slurm, and our implementation will be available as open source.
We evaluated WoAS by simulating NERSC’s Edison supercomputer
and its workload, modeled a�er the study of three years of its real
job traces.

Our results show that with WoAS, work�ows show signi�cantly
shorter turnaround times than the chained job and single job ap-
proaches, and no wasted resources. In traces that have moderate
work�ow presence (< 50% core hours), using WoAS, FCFS and
back�lling achieves turnaround times as short or shorter than sub-
mi�ing work�ows as single jobs and much shorter than as chained
jobs (up to 3.75x speedup), while keeping the system highly utilized
(over 90% and no allocated idle resources). It also produces utiliz-
ation gains over the single job approach (e.g. 60% for Montage
work�ows, 10% work�ow share) and, has no or negligible impact
on the slowdown on non work�ow jobs.

Similarly, in workloads dominated by work�ows (� %50) experi-
ments show that work�ow performance is similar to the one stated
above. However, other scheduling mechanisms, like the queue
depth limits in the back�lling algorithm, may a�ect WoAS increas-
ing the non work�ow job slowdown, specially in the presence of
large work�ows (e.g. 7x in Montage, 75% share). �is e�ect could
be eased by �ltering not ready jobs in the waiting queue, which is
future work.

We conclude that WoAS work�ow scheduling performs signi�c-
antly be�er than current approaches to executing work�ows on
HPC systems while posing no signi�cant drawbacks.

7 ACKNOWLEDGMENTS
�is material is based upon work supported by the U.S. Department
of Energy, O�ce of Science, O�ce of Advanced Scienti�c Com-
puting Research (ASCR).�e National Energy Research Scienti�c
Computing Center, a DOE O�ce of Science User Facility, is sup-
ported by the O�ce of Science of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231. Financial support has
been provided in part by the Swedish Government’s strategic e�ort
eSSENCE and the Swedish Research Council (VR) under contract
number C0590801 (Cloud Control).

REFERENCES
[1] Gonzalo Pedro Rodrigo Alvarez, Per-Olov Östberg, Erik Elmroth, Katie Antypas,

Richard Gerber, and Lavanya Ramakrishnan. 2016. Towards Understanding Job
Heterogeneity in HPC: A NERSC Case Study. In 2016 16th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid). IEEE, 521–526.

[2] Stephen Bailey. 2016. (01 2016). h�ps://bitbucket.org/berkeleylab/qdo
[3] Shishir Bharathi, Ann Chervenak, Ewa Deelman, Gaurang Mehta, Mei-Hui Su,

and Karan Vahi. 2008. Characterization of scienti�c work�ows. In 2008 �ird
Workshop on Work�ows in Support of Large-Scale Science. IEEE, 1–10.

[4] Ewa Deelman, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta,
Sonal Patil, Mei-Hui Su, Karan Vahi, and Miron Livny. 2004. Pegasus: Mapping
scienti�c work�ows onto the grid. In Grid Computing. Springer, 11–20.

[5] T. Fahringer, R. Prodan, R.Duan, J. Hofer, F. Nadeem, F. Nerieri, S. Podlipnig, J.
Qin, M. Siddiqui, H.-L. Truong, A. Villazon, and M. Wieczorek. 2007. ASKALON:
A Development and Grid Computing Environment for Scienti�c Work�ows. In
Work�ows for e-Science, I. Taylor and others (Eds.). Springer-Verlag, 450–471.

[6] Dror G Feitelson, Larry Rudolph, and Uwe Schwiegelshohn. 2005. Parallel job
scheduling, a status report. In Job Scheduling Strategies for Parallel Processing.
Springer, 1–16.

[7] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D
Joseph, Randy H Katz, Sco� Shenker, and Ion Stoica. 2011. Mesos: A Platform
for Fine-Grained Resource Sharing in the Data Center.. In NSDI, Vol. 11.

[8] Anubhav Jain, Shyue Ping Ong, Wei Chen, Bharat Medasani, Xiaohui�, Mi-
chael Kocher, Miriam Brafman, Guido Petre�o, Gian-Marco Rignanese, Geo�roy
Hautier, and others. 2015. FireWorks: a dynamic work�ow system designed
for high-throughput applications. Concurrency and Computation: Practice and
Experience 27, 17 (2015), 5037–5059.

[9] William TC Kramer and Clint Ryan. 2003. Performance variability of highly par-
allel architectures. In International Conference on Computational Science. Springer,
560–569.

[10] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher
Kellogg, Sailesh Mi�al, Jignesh M Patel, Karthik Ramasamy, and Siddarth Taneja.
2015. Twi�er heron: Stream processing at scale. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data. ACM, 239–250.

[11] David A Li�a. 1995. �e ANL/IBM SP scheduling system. In Job Scheduling
Strategies for Parallel Processing. Springer, 295–303.

[12] Alejandro Lucero. 2011. Simulation of batch scheduling using real production-
ready so�ware tools. Proceedings of the 5th IBERGRID (2011).

[13] Muthucumaru Maheswaran, Shoukat Ali, HJ Siegal, Debra Hensgen, and
Richard F Freund. 1999. Dynamic matching and scheduling of a class of independ-
ent tasks onto heterogeneous computing systems. In Heterogeneous Computing
Workshop, 1999.(HCW’99) Proceedings. Eighth. IEEE, 30–44.

[14] Hashim H Mohamed and Dick HJ Epema. 2005. �e design and implementation
of the KOALA co-allocating grid scheduler. In European Grid Conference. Springer,
640–650.

[15] Ioan Raicu, Yong Zhao, Catalin Dumitrescu, Ian Foster, and Mike Wilde. 2007.
Falkon: a Fast and Light-weight tasK executiON framework. In Proceedings of
the 2007 ACM/IEEE conference on Supercomputing. ACM, 43.

[16] Lavanya Ramakrishnan and Dennis Gannon. 2008. A survey of distributed
work�ow characteristics and resource requirements. Indiana University (2008),
1–23.

[17] Lavanya Ramakrishnan, Charles Koelbel, Yang-Suk Kee, Rich Wolski, Daniel
Nurmi, Dennis Gannon, Graziano Obertelli, Asim YarKhan, Anirban Mandal,
T Mark Huang, and others. 2009. VGrADS: enabling e-Science work�ows on
grids and clouds with fault tolerance. In Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis. IEEE, 1–12.

[18] Gonzalo Rodrigo, P-O Östberg, Erik Elmroth, Katie Antypass, Richard Gerber, and
Lavanya Ramakrishnan. 2015. HPC System Lifetime Story: Workload Character-
ization and Evolutionary Analyses on NERSC Systems. In �e 24th International
ACM Symposium on High-Performance Distributed Computing (HPDC).

[19] Gonzalo Rodrigo, Lavanya Ramakrishnan, P-O Östberg, and Erik Elmroth. 2015.
A2L2: an Application Aware �exible HPC scheduling model for Low Latency
allocation. In �e 8th International Workshop on Virtualization Technologies in
Distributed Computing (VTDC).

[20] Rizos Sakellariou and Henan Zhao. 2004. A hybrid heuristic for DAG scheduling
on heterogeneous systems. In Parallel and Distributed Processing Symposium,
2004. Proceedings. 18th International. IEEE, 111.

[21] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes.
2013. Omega: �exible, scalable schedulers for large compute clusters. In Proceed-
ings of the 8th ACM European Conference on Computer Systems. ACM, 351–364.

[22] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.
�e hadoop distributed �le system. In 2010 IEEE 26th symposium on mass storage
systems and technologies (MSST). IEEE, 1–10.

[23] Massimo Benini Stephen Tro�no�. 2015. Using and Modifying the BSC Slurm
Workload Simulator. In Slurm User Group.

[24] Haluk Topcuoglu, Salim Hariri, and Min-you Wu. 2002. Performance-e�ective
and low-complexity task scheduling for heterogeneous computing. IEEE trans-
actions on parallel and distributed systems 13, 3 (2002), 260–274.

[25] Marek Wieczorek, Radu Prodan, and �omas Fahringer. 2005. Scheduling of
scienti�c work�ows in the ASKALON grid environment. ACM SIGMOD Record
34, 3 (2005), 56–62.

[26] Jia Yu and Rajkumar Buyya. 2005. A taxonomy of scienti�c work�ow systems
for grid computing. ACM Sigmod Record 34, 3 (2005), 44–49.

[27] Jia Yu, Rajkumar Buyya, and Chen Khong�am. 2005. Cost-based scheduling of
scienti�c work�ow applications on utility grids. In First International Conference
on e-Science and Grid Computing (e-Science’05). IEEE.

[28] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Sco� Shenker, and Ion
Stoica. 2010. Spark: cluster computing with working sets. HotCloud 10 (2010).

[29] Yong Zhao, Mihael Hategan, Ben Cli�ord, Ian Foster, Gregor Von Laszewski,
Veronika Nefedova, Ioan Raicu, Tiberiu Stef-Praun, and Michael Wilde. 2007.
Swi�: Fast, reliable, loosely coupled parallel computation. In 2007 IEEE Congress
on Services. IEEE, 199–206.

122

HPC Scheduling in
a Brave New World

Gonzalo P. Rodrigo Álvarez

G
onzalo P. Rodrigo Á

lvarez
 H

P
C

 S
ch

ed
u

lin
g

 in
 a B

rave N
ew

 W
orld

20
17

Department of Computing Science
Umeå University, SE-901 87 Umeå
www.cs.umu.se/english

Batch scheduling is like playing Tetris with jobs instead of pieces...
…only, you cannot rotate the pieces.

ru
nt

im
e

resources

UMEÅ UNIVERSITY

ISBN 978-91-7601-693-0
ISSN 0348-0542
UMINF 17.05

