

# Scheduling for future HPC systems



#### Gonzalo P. Rodrigo - gonzalo@cs.umu.se

Erik Elmroth – <u>elmroth@cs.umu.se</u> Lavanya Ramakrishnan – <u>Iramakrishnan@lbl.gov</u> P-O Östberg – <u>p-o@cs.umu.se</u>

Distributed Systems Group – Umeå University, Sweden Data Science & Technology – Lawrence Berkeley National Lab





## What is this talk about?



We analyzed the lifetime workloads of three last Berkeley Lab's HPC systems: Job and application heterogeneity is giving the scheduler a hard time.

Surveyed trends toward Exascale: How systems heterogeneity and extreme parallelization will challenge schedulers.

We talked with HPC users using workflows: They wait forever or waste resources. We propose a solution.

We designed a cloud inspired scheduling model to cope with systems and workload heterogeneity.

# Present the toolset that made this scheduling research possible.



[3] Harmonogram by Karol Adamiecki

FCFS: Jobs execute in arrival order

**Back-filling**: Job can start if it does not delay previous jobs.







## Workloads and Systems

[1]



[1] Aurora Supercomputer: http://aurora.alcf.anl.gov

[2] Visualization elements from climate science, design accelerator design, biological research, transportation improvement, chemistry, and cosmology: http://aurora.alcf.anl.gov



ME



G. Rodrigo, P-O. Östberg, E. Elmroth, K. Antypas, R. Gerber, and L. Ramakrishnan. Towards Understanding Job Heterogeneity in HPC: A NERSC Case Study. CCGrid 2016 - The 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, 2016.

G. Rodrigo, P-O. Östberg, E. Elmroth, K. Antypas, R. Gerber, and L. Ramakrishnan. (2015, June). HPC System Lifetime Story: Workload Characterization and Evolutionary Analyses on NERSC Systems. In Proceedings of the 24th International Symposium on High-Performance Parallel and Distributed Computing (pp. 57-60)



[1] Tansley, Stewart, and Kristin Michele Tolle, eds. The fourth paradigm: data-intensive scientific discovery. Vol. 1. Redmond, WA: Microsoft research, 2009.



**BERKELEY LAB** 

#### Present Workload: New, "old" applications





Grid workflows = In-Site Workflows



# Why Exascale?

## Science is fueled by computation: More power, more science.

Systems

Grid based simulations (e.g. climate) require more resolution: More parallelism.





#### Exascale: What is the challenge?

#### It's all about power and cost



#### Break down of Dennard scaling



BERKELEY LAB

### Raw Exaflops are possible by increasing the number of CPUs but...



Systems





#### A pre-Exascale system: HPC2N's Kebnekaise







432 classical compute nodes (12 096 cores)

20 large memory nodes (3 terabytes/node)

32 2xGPU Nodes (319 488 gpu cores)

4 4xGPU Nodes (79 872 gpu cores)

36 KNL Nodes (9 792 threads)

416 352 Cores

437 232 Threads

**128 TBytes RAM** 

**4 types of CPUS** 

Non Uniform Memory BW

#### Heterogeneity: memory, compute, interconnect, and programming models.



#### Sunway TaihuLight 1 Exaflop 93.014 PFLOPS US\$3003M X 11 **US\$273M** 165 MW 15 MW (No cooling) 256+4 cores/CPU Scratchpad memory In Chip network X3 Gflops/Watt Hard to program **Bad HPCG** Slow memory **Benchmark Modest interconnect**

A pre-Exascale system: Sunway TaihuLight

[1] Dongarra, Jack. "Report on the Sunway TaihuLight system." www.netlib.org. Retrieved June 20 (2016).





#### All challenges



Hard to predict wait times



## No Wait, No Waste: Workflow aware scheduling

To be submitted to IPDPS 2017



#### But before... What is a workflow?





But..

# How does a scheduler deal with **Workflows**?



#### Submitting a workflow: Wait! (approach)





#### Submitting a workflow: Waste! (approach)





**BERKELEY LAB** 

#### Workflow aware scheduling: Backfilling





#### Workflow aware scheduling: FCFS





#### 

#### Workflow aware scheduling: Before





Avoid System Gaming









#### Workflow aware scheduling: Some results





[1] Scheduling taxonomy: Schwarzkopf, Malte, et al. "Omega: flexible, scalable schedulers for large compute clusters." Proceedings of the 8th ACM European Conference on Computer Systems. ACM, 2013.

[2] Multilevel Queues: https://www.cs.rutgers.edu/~pxk/416/notes/07-scheduling.html

[3] Rodrigo Álvarez, G. P., Östberg, P. O., Elmroth, E., & Ramakrishnan, L. (2015, June). A2L2: An Application Aware Flexible HPC Scheduling Model for Low-Latency Allocation. In Proceedings of the 8th International Workshop on Virtualization Technologies in Distributed Computing (pp. 11-19)



Looking for inspiration... in the clouds.

#### Cloud infrastructures have faced similar challenges...



Hypothesis: Cloud scheduling techniques can be applied to tackle new HPC challenges.
Method: Compared study on techniques and application circumstances (Survey)





A2L2: Application Aware Flexible HPC Scheduling Model for Low-Latency Allocation

**Application aware scheduling**: Aware of characteristics, performance models, different rules for different types of job.

**Dynamically malleable management**: runtime re-scaling of jobs, performance based allocation.

Flexible backfilling: for better utilization

**Low latency allocation**: To allow allocation of jobs a short time after submission (stream job)





### Scheduler model

Cloud borrowed solution: **Two level scheduling** One scheduler per application + smart RM Malleable Applications: Dynamic allocation Low latency allocation





#### Flexible backfilling





Resource Expropriation: Low latency allocation

Temporary "expropriation" of resources assigned assigned to dynamically malleable applications

#### **Expropriate and return actions**





#### Resource Expropriation: Low latency allocation







Application heterogeneity is a trait of both cloud and HPC applications

Application Aware



Flexible nature of malleable applications can be useful (and there maybe enough malleable workload to make be useful)



## Scheduling: Challenges Research & Operational

To be submitted to CCGRID 2017



### Our work required too much engineering...



![](_page_39_Figure_0.jpeg)

![](_page_40_Picture_0.jpeg)

#### Workload generator

![](_page_40_Figure_2.jpeg)

![](_page_41_Figure_0.jpeg)

![](_page_41_Figure_1.jpeg)

![](_page_42_Picture_0.jpeg)

![](_page_42_Figure_2.jpeg)

![](_page_43_Figure_0.jpeg)

![](_page_44_Picture_0.jpeg)

### Slurm Simulator: The work

- sim\_mgr and scheduling loops RPC synchronized
- Every significant thread is synced with the simulation controller.

- Real vs simulation time: x10-x20 speedup
- Priority, Scheduling, and Accouting are synced.
- Scheduler can achieve high utilization.
- Results are "semi" deterministic.

![](_page_45_Picture_0.jpeg)

### Workload analyzer: Evaluating scheduler

![](_page_45_Picture_2.jpeg)

runtime cpus cores cpu cores runtime turmaround time (s) turmaround time (s)

106

105

105

104

106

105

wait

x1

x2

x4

x16

x8

![](_page_45_Figure_3.jpeg)

![](_page_46_Picture_0.jpeg)

- To be fully described in upcoming paper
- Analysis, generation, running, and workflow aware scheduler will be open sourced

- Scheduling research: save "engineering hours"
- Admins: capacity to play with configurations of their own systems and their own workloads.

![](_page_47_Picture_0.jpeg)

![](_page_47_Figure_1.jpeg)

### Summary of take-aways

Systems and workloads require new scheduling: We propose two-level cloud inspired model.

In-site workflows are very important: There is a better way to schedule them.

# Good tools are fundamental for good research and operations.

![](_page_48_Picture_0.jpeg)

![](_page_48_Picture_1.jpeg)

#### Thanks for your time... questions?

CRAN

CRAY

Ner SC

# 

Gonzalo P. Rodrigo – gonzalo@cs.umu.se

Ernest Orlando Lawrence Berkeley National

Laboratory

CAREER

.....

BERKELEY

ERNEST O. LAWRENCE

![](_page_49_Picture_0.jpeg)

#### To know more....

#### Contact: <u>gonzalo@cs.umu.se</u> - <u>gprodrigoalvarez@lbl.gov</u>

Rodrigo Álvarez, G. P., Östberg, P. O., Elmroth, E., Antypas, K., Gerber, R., & Ramakrishnan, L. Towards Understanding Job Heterogeneity in HPC: A NERSC Case Study. CCGrid 2016 - The 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, 2016.

Rodrigo Álvarez, G. P., Östberg, P. O., Elmroth, E., Antypas, K., Gerber, R., & Ramakrishnan, L. (2015, June). HPC System Lifetime Story: Workload Characterization and Evolutionary Analyses on NERSC Systems. In Proceedings of the 24th International Symposium on High-Performance Parallel and Distributed Computing (pp. 57-60). ACM.

Rodrigo Álvarez, G. P., Östberg, P. O., Elmroth, E., & Ramakrishnan, L. (2015, June). A2L2: An Application Aware Flexible HPC Scheduling Model for Low-Latency Allocation. In Proceedings of the 8th International Workshop on Virtualization Technologies in Distributed Computing (pp. 11-19). ACM. Citation

Rodrigo, G. P., Östberg, P-O. & Elmroth, E. (2014). Priority Operators for Fairshare Scheduling. 18th Workshops on Job Scheduling Strategies for Parallel Processing (JSSPP 2014) hosted at the IPDPS-2014 conference.

Rodrigo, G. P. Establishing the equivalence between operators: theorem to establish a sufficient condition for two operators to produce the same ordering in a Faishare prioritization system. January 2014.

Rodrigo, G. P. Proof of compliance for the relative operator on the proportional distribution of unused share in an ordering fairshare system. January 2014.